Spaces:
Running
on
L40S
Running
on
L40S
File size: 3,022 Bytes
31f2f28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
import os
import os.path as osp
# will be update in exp
num_gpus = -1
exp_name = 'output/exp1/pre_analysis'
# quick access
save_epoch = 1
lr = 1e-5
end_epoch = 10
train_batch_size = 32
syncbn = True
bbox_ratio = 1.2
# continue
continue_train = False
start_over = True
# dataset setting
agora_fix_betas = True
agora_fix_global_orient_transl = True
agora_valid_root_pose = True
# all data
dataset_list = ['Human36M', 'MSCOCO', 'MPII', 'AGORA', 'EHF', 'SynBody', 'GTA_Human2', \
'EgoBody_Egocentric', 'EgoBody_Kinect', 'UBody', 'PW3D', 'MuCo', 'PROX']
trainset_3d = ['MSCOCO','AGORA', 'UBody']
trainset_2d = ['PW3D', 'MPII', 'Human36M']
trainset_humandata = ['BEDLAM', 'SPEC', 'GTA_Human2','SynBody', 'PoseTrack',
'EgoBody_Egocentric', 'PROX', 'CrowdPose',
'EgoBody_Kinect', 'MPI_INF_3DHP', 'RICH', 'MuCo', 'InstaVariety',
'Behave', 'UP3D', 'ARCTIC',
'OCHuman', 'CHI3D', 'RenBody_HiRes', 'MTP', 'HumanSC3D', 'RenBody',
'FIT3D', 'Talkshow' , 'SSP3D', 'LSPET']
testset = 'EHF'
use_cache = True
# downsample
BEDLAM_train_sample_interval = 5
EgoBody_Kinect_train_sample_interval = 10
train_sample_interval = 10 # UBody
MPI_INF_3DHP_train_sample_interval = 5
InstaVariety_train_sample_interval = 10
RenBody_HiRes_train_sample_interval = 5
ARCTIC_train_sample_interval = 10
# RenBody_train_sample_interval = 10
FIT3D_train_sample_interval = 10
Talkshow_train_sample_interval = 10
# strategy
data_strategy = 'balance' # 'balance' need to define total_data_len
total_data_len = 4500000
# model
smplx_loss_weight = 1.0 #2 for agora_model for smplx shape
smplx_pose_weight = 10.0
smplx_kps_3d_weight = 100.0
smplx_kps_2d_weight = 1.0
net_kps_2d_weight = 1.0
agora_benchmark = 'agora_model' # 'agora_model', 'test_only'
model_type = 'smpler_x_s'
encoder_config_file = 'main/transformer_utils/configs/smpler_x/encoder/body_encoder_small.py'
encoder_pretrained_model_path = 'pretrained_models/vitpose_small.pth'
feat_dim = 384
## =====FIXED ARGS============================================================
## model setting
upscale = 4
hand_pos_joint_num = 20
face_pos_joint_num = 72
num_task_token = 24
num_noise_sample = 0
## UBody setting
train_sample_interval = 10
test_sample_interval = 100
make_same_len = False
## input, output size
input_img_shape = (512, 384)
input_body_shape = (256, 192)
output_hm_shape = (16, 16, 12)
input_hand_shape = (256, 256)
output_hand_hm_shape = (16, 16, 16)
output_face_hm_shape = (8, 8, 8)
input_face_shape = (192, 192)
focal = (5000, 5000) # virtual focal lengths
princpt = (input_body_shape[1] / 2, input_body_shape[0] / 2) # virtual principal point position
body_3d_size = 2
hand_3d_size = 0.3
face_3d_size = 0.3
camera_3d_size = 2.5
## training config
print_iters = 100
lr_mult = 1
## testing config
test_batch_size = 32
## others
num_thread = 2
vis = False
## directory
output_dir, model_dir, vis_dir, log_dir, result_dir, code_dir = None, None, None, None, None, None
|