Spaces:
Sleeping
Sleeping
File size: 9,715 Bytes
ec06acb 45a140a ec06acb 45a140a ec06acb 45a140a ec06acb 45a140a ec06acb 45a140a ec06acb 45a140a ec06acb 45a140a ec06acb 45a140a ec06acb 45a140a ec06acb 45a140a ec06acb 45a140a ec06acb 45a140a ec06acb 45a140a ec06acb 45a140a ec06acb 45a140a ec06acb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "view-in-github"
},
"source": [
"<a href=\"https://colab.research.google.com/github/ivelin/donut_ui_refexp/blob/main/Inference_Playground_Donut_UI_RefExp_Gradio.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "x6dFfL0QUr8P",
"outputId": "58f3b497-f4e8-46bc-a40c-b564f6e14010"
},
"outputs": [],
"source": [
"#@title Check out source repo if not automatically available\n",
"# !git clone https://github.com/GuardianUI/ui-refexp\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "RQdzURjDWYco",
"outputId": "2628c536-780e-4544-8f37-33a7e79ee367"
},
"outputs": [],
"source": [
"# Go to hf space dir if not already there\n",
"# !cd ui-refexp/hf-space && \n",
"\n",
"!pip3 install -r requirements.txt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# from PIL import Image, ImageDraw\n",
"# from transformers import DonutProcessor, VisionEncoderDecoderModel\n",
"\n",
"# pretrained_repo_name = 'ivelin/donut-refexp-click'\n",
"# pretrained_revision = 'main'\n",
"# # revision can be git commit hash, branch or tag\n",
"# # use 'main' for latest revision\n",
"# print(f\"Loading model checkpoint: {pretrained_repo_name}\")\n",
"\n",
"# proc = DonutProcessor.from_pretrained(\n",
"# pretrained_repo_name, revision=pretrained_revision, use_auth_token=\"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\")\n",
"# proc.image_processor.do_align_long_axis = False\n",
"# proc.image_processor.do_resize = False\n",
"# proc.image_processor.do_thumbnail = False\n",
"# proc.image_processor.do_pad = False\n",
"# proc.image_processor.do_rescale = False\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/gitpod/.pyenv/versions/3.8.16/lib/python3.8/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loading model checkpoint: ivelin/donut-refexp-click\n",
"processor image size: {'height': 1280, 'width': 960}\n",
"Running on local URL: http://127.0.0.1:7860\n",
"Running on public URL: https://f2beb057-2b06-4a52.gradio.live\n",
"\n",
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades (NEW!), check out Spaces: https://huggingface.co/spaces\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"https://f2beb057-2b06-4a52.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"(image, prompt): <PIL.Image.Image image mode=RGB size=2719x980 at 0x7F8F12C6E3D0>, click on search button\n",
"predicted decoder sequence: <s_refexp><s_prompt> click on search button</s_prompt><s_target_center><s_x> 0.23</s_x><s_y> 0.33</s_y></s_target_center></s>\n",
"predicted decoder sequence before token2json: <s_prompt> click on search button</s_prompt><s_target_center><s_x> 0.23</s_x><s_y> 0.33</s_y></s_target_center>\n",
"predicted center_point with text coordinates: {'x': '0.23', 'y': '0.33'}\n",
"predicted center_point with float coordinates: {'x': 0.23, 'y': 0.33, 'decoder output sequence (before x,y adjustment)': '<s_prompt> click on search button</s_prompt><s_target_center><s_x> 0.23</s_x><s_y> 0.33</s_y></s_target_center>'}\n",
"input image size: (2719, 980)\n",
"processed prompt: <s_refexp><s_prompt>click on search button</s_prompt><s_target_center>\n",
"point={'x': 0.23, 'y': 0.33, 'decoder output sequence (before x,y adjustment)': '<s_prompt> click on search button</s_prompt><s_target_center><s_x> 0.23</s_x><s_y> 0.33</s_y></s_target_center>'}, input_image_size=(2719, 980), output_image_size=(960, 1280)\n",
">>> resized_width=960\n",
">>> resized_height=346\n",
"translated point={'x': 0.23, 'y': 1.2208092485549134, 'decoder output sequence (before x,y adjustment)': '<s_prompt> click on search button</s_prompt><s_target_center><s_x> 0.23</s_x><s_y> 0.33</s_y></s_target_center>'}, resized_image_size: (960, 346)\n",
"to image pixel values: x, y: (625, 1196)\n",
"(image, prompt): <PIL.Image.Image image mode=RGB size=2719x980 at 0x7F8F12C5C9D0>, click on search names\n",
"predicted decoder sequence: <s_refexp><s_prompt> click on search names</s_prompt><s_target_center><s_x> 0.5</s_x><s_y> 0.18</s_y></s_target_center></s>\n",
"predicted decoder sequence before token2json: <s_prompt> click on search names</s_prompt><s_target_center><s_x> 0.5</s_x><s_y> 0.18</s_y></s_target_center>\n",
"predicted center_point with text coordinates: {'x': '0.5', 'y': '0.18'}\n",
"predicted center_point with float coordinates: {'x': 0.5, 'y': 0.18, 'decoder output sequence (before x,y adjustment)': '<s_prompt> click on search names</s_prompt><s_target_center><s_x> 0.5</s_x><s_y> 0.18</s_y></s_target_center>'}\n",
"input image size: (2719, 980)\n",
"processed prompt: <s_refexp><s_prompt>click on search names</s_prompt><s_target_center>\n",
"point={'x': 0.5, 'y': 0.18, 'decoder output sequence (before x,y adjustment)': '<s_prompt> click on search names</s_prompt><s_target_center><s_x> 0.5</s_x><s_y> 0.18</s_y></s_target_center>'}, input_image_size=(2719, 980), output_image_size=(960, 1280)\n",
">>> resized_width=960\n",
">>> resized_height=346\n",
"translated point={'x': 0.5, 'y': 0.6658959537572254, 'decoder output sequence (before x,y adjustment)': '<s_prompt> click on search names</s_prompt><s_target_center><s_x> 0.5</s_x><s_y> 0.18</s_y></s_target_center>'}, resized_image_size: (960, 346)\n",
"to image pixel values: x, y: (1359, 652)\n"
]
}
],
"source": [
"import app\n",
"\n",
"# img = Image.open('val-image-4.jpg')\n",
"# print(img.size)\n",
"# display(img)\n",
"# out_size = (proc.image_processor.size['width'],\n",
"# proc.image_processor.size['height'])\n",
"# oimg = app.prepare_image_for_encoder(img, output_image_size=out_size)\n",
"# print(oimg.size)\n",
"# display(oimg)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# import transformers\n",
"\n",
"# turn off normalization so we can see the image\n",
"# otherwise its tiny [0..1] float values that all look like the color black(0)\n",
"# proc.image_processor.do_normalize = False\n",
"\n",
"# npimg = proc.image_processor.preprocess(oimg)\n",
"# pimg = transformers.image_transforms.to_pil_image(npimg['pixel_values'][0])\n",
"# pimg.save('tmp.png')\n",
"# display(pimg)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"include_colab_link": true,
"provenance": []
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.16"
},
"vscode": {
"interpreter": {
"hash": "9ac03a0a6051494cc606d484d27d20fce22fb7b4d169f583271e11d5ba46a56e"
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|