import os import torch import numpy as np import torch.nn.functional as F import torchvision.transforms as T from PIL import Image from decord import VideoReader from decord import cpu from uniformer import uniformer_small from kinetics_class_index import kinetics_classnames from transforms import ( GroupNormalize, GroupScale, GroupCenterCrop, Stack, ToTorchFormatTensor ) import gradio as gr from huggingface_hub import hf_hub_download # Device on which to run the model # Set to cuda to load on GPU device = "cpu" # os.system("wget https://cdn-lfs.huggingface.co/Andy1621/uniformer/d5fd7b0c49ee6a5422ef5d0c884d962c742003bfbd900747485eb99fa269d0db") model_path = hf_hub_download(repo_id="Andy1621/uniformer", filename="uniformer_small_k400_16x8.pth") # Pick a pretrained model model = uniformer_small() # state_dict = torch.load('d5fd7b0c49ee6a5422ef5d0c884d962c742003bfbd900747485eb99fa269d0db', map_location='cpu') state_dict = torch.load(model_path, map_location='cpu') model.load_state_dict(state_dict) # Set to eval mode and move to desired device model = model.to(device) model = model.eval() # Create an id to label name mapping kinetics_id_to_classname = {} for k, v in kinetics_classnames.items(): kinetics_id_to_classname[k] = v def get_index(num_frames, num_segments=16, dense_sample_rate=8): sample_range = num_segments * dense_sample_rate sample_pos = max(1, 1 + num_frames - sample_range) t_stride = dense_sample_rate start_idx = 0 if sample_pos == 1 else sample_pos // 2 offsets = np.array([ (idx * t_stride + start_idx) % num_frames for idx in range(num_segments) ]) return offsets + 1 def load_video(video_path): vr = VideoReader(video_path, ctx=cpu(0)) num_frames = len(vr) frame_indices = get_index(num_frames, 16, 16) # transform crop_size = 224 scale_size = 256 input_mean = [0.485, 0.456, 0.406] input_std = [0.229, 0.224, 0.225] transform = T.Compose([ GroupScale(int(scale_size)), GroupCenterCrop(crop_size), Stack(), ToTorchFormatTensor(), GroupNormalize(input_mean, input_std) ]) images_group = list() for frame_index in frame_indices: img = Image.fromarray(vr[frame_index].asnumpy()) images_group.append(img) torch_imgs = transform(images_group) return torch_imgs def inference(video): vid = load_video(video) # The model expects inputs of shape: B x C x H x W TC, H, W = vid.shape inputs = vid.reshape(1, TC//3, 3, H, W).permute(0, 2, 1, 3, 4) prediction = model(inputs) prediction = F.softmax(prediction, dim=1).flatten() return {kinetics_id_to_classname[str(i)]: float(prediction[i]) for i in range(400)} def set_example_video(example: list) -> dict: return gr.Video.update(value=example[0]) demo = gr.Blocks() with demo: gr.Markdown( """ # UniFormer-S Gradio demo for UniFormer: To use it, simply upload your video, or click one of the examples to load them. Read more at the links below. """ ) with gr.Box(): with gr.Row(): with gr.Column(): with gr.Row(): input_video = gr.Video(label='Input Video') with gr.Row(): submit_button = gr.Button('Submit') with gr.Column(): label = gr.Label(num_top_classes=5) with gr.Row(): example_videos = gr.Dataset(components=[input_video], samples=[['hitting_baseball.mp4'], ['hoverboarding.mp4'], ['yoga.mp4']]) gr.Markdown( """
[ICLR2022] UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning | Github Repo
""" ) submit_button.click(fn=inference, inputs=input_video, outputs=label) example_videos.click(fn=set_example_video, inputs=example_videos, outputs=example_videos.components) demo.launch(enable_queue=True)