File size: 3,314 Bytes
e3475d1 eee7fb1 c7d0adf eee7fb1 c7d0adf e3475d1 eee7fb1 e3475d1 eee7fb1 e3475d1 eee7fb1 e3475d1 eee7fb1 e3475d1 eee7fb1 e3475d1 eee7fb1 e3475d1 eee7fb1 e3475d1 eee7fb1 e3475d1 eee7fb1 e3475d1 eee7fb1 e3475d1 eee7fb1 e3475d1 eee7fb1 e3475d1 eee7fb1 e3475d1 eee7fb1 e3475d1 eee7fb1 e3475d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
# Model documentation & parameters
**Model type**: Type of PGT model to be used:
- `PGTGenerator`: A model for part-of-patent generator.
- `PGTEditor`: An algorithm for part-of-patent editing.
- `PGTCoherenceChecker`: An algorithm for patent coherence check.
**Generator task**: Task in case the `PGTGenerator` model is used. Options are:
- `title-to-abstract`
- `abstract-to-title`
- `abstract-to-claim`
- `claim-to-abstract`
**Editor task**: Task in case the `PGTEditor` model is used. Options are:
- `abstract`
- `claim`
**Coherence task**: Task in case the `PGTCoherenceChecker` model is used. Options are:
- `title-abstract`
- `title-claim`
- `abstract-claim`
**Primary text prompt**: The main text prompt for the model
**Secondary text prompt**: The secondary text prompt for the model (only used for `PGTCoherenceChecker`).
**Maximal length**: The maximal number of tokens in the generated sequences.
**Top-k**: Number of top-k probability tokens to keep.
**Top-p**: Only tokens with cumulative probabilities summing up to this value are kept.
# Model card -- PatentGenerativeTransformer
**Model Details**: Patent Generative Transformer (PGT), a transformer-based multitask language model trained to facilitate the patent generation process. Published by [Christofidellis et al. (*ICML 2022 Workshop KRLM*)](https://openreview.net/forum?id=dLHtwZKvJmE)
**Developers**: Dimitrios Christofidellis and colleagues at IBM Research.
**Distributors**: Model natively integrated into GT4SD.
**Model date**: 2022.
**Model type**:
- `PGTGenerator`: A model for part-of-patent generator
- `PGTEditor`: An algorithm for part-of-patent editing.
- `PGTCoherenceChecker`: An algorithm for patent coherence check
**Information about training algorithms, parameters, fairness constraints or other applied approaches, and features**:
N.A.
**Paper or other resource for more information**:
The Patent Generative Transformer (PGT) [paper by Christofidellis et al. (*ICML 2022 Workshop KRLM*)](https://openreview.net/forum?id=dLHtwZKvJmE).
**License**: MIT
**Where to send questions or comments about the model**: Open an issue on [GT4SD repository](https://github.com/GT4SD/gt4sd-core).
**Intended Use. Use cases that were envisioned during development**: N.A.
**Primary intended uses/users**: N.A.
**Out-of-scope use cases**: Production-level inference, producing molecules with harmful properties.
**Metrics**: N.A.
**Datasets**: N.A.
**Ethical Considerations**: Unclear, please consult with original authors in case of questions.
**Caveats and Recommendations**: Unclear, please consult with original authors in case of questions.
Model card prototype inspired by [Mitchell et al. (2019)](https://dl.acm.org/doi/abs/10.1145/3287560.3287596?casa_token=XD4eHiE2cRUAAAAA:NL11gMa1hGPOUKTAbtXnbVQBDBbjxwcjGECF_i-WC_3g1aBgU1Hbz_f2b4kI_m1in-w__1ztGeHnwHs)
## Citation
```bib
@inproceedings{christofidellis2022pgt,
title={PGT: a prompt based generative transformer for the patent domain},
author={Christofidellis, Dimitrios and Torres, Antonio Berrios and Dave, Ashish and Roveri, Manuel and Schmidt, Kristin and Swaminathan, Sarath and Vandierendonck, Hans and Zubarev, Dmitry and Manica, Matteo},
booktitle={ICML 2022 Workshop on Knowledge Retrieval and Language Models},
year={2022}
}
``` |