# -*- coding: utf-8 -*- """TridentModel.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1u07dSU0DoKnNzGzySXMTisXnaloqpUEO TRIDENT MODEL IMPLEMENTATION Date: 14 January 2023 Authors: Egheosa Ogbomo & Amran Mohammed (The Polymer Guys) Description: This script combines three ML-based models to identify whether an input text is related to green plastics or not. """ #pip install transformers ########## IMPORTING REQUIRED PYTHON PACKAGES ########## import pandas as pd import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from transformers import AutoTokenizer, AutoModel import torch import math import time import csv import pandas as pd import nltk from nltk.tokenize import word_tokenize from nltk.corpus import stopwords nltk.download('stopwords') nltk.download('punkt') import string ########## DEFINING FUNCTIONS FOR MODEL IMPLEMENTATIONS ########## ### Input data cleaner all_stopwords = stopwords.words('english') # Making sure to only use English stopwords extra_stopwords = ['ii', 'iii'] # Can add extra stopwords to be removed from dataset/input abstracts all_stopwords.extend(extra_stopwords) def clean_data(input, type='Dataframe'): """ As preparation for use with the text similarity model, this function removes superfluous data from either a dataframe full of classifications, or an input string, in order for embeddings to be calculated for them. Removes: • Entries with missing abstracts/descriptions/classifications/typos • Duplicate entries • Unnecessary punctuation • Stop words (e.g., by, a , an, he, she, it) • URLs • All entries are in the same language :param input: Either a dataframe or an individual string :param type: Tells fucntion whether input is a dataframe or an individual string :return: (if dataframe), returns a dataframe containing CPC classfication codes and their associated 'cleaned' description :return: (if string), returns a 'cleaned' version of the input string """ if type == 'Dataframe': cleaneddf = pd.DataFrame(columns=['Class', 'Description']) for i in range(0, len(input)): row_list = input.loc[i, :].values.flatten().tolist() noNaN_row = [x for x in row_list if str(x) != 'nan'] listrow = [] if len(noNaN_row) > 0: row = noNaN_row[:-1] row = [x.strip() for x in row] row = (" ").join(row) text_tokens = word_tokenize(row) # splits abstracts into individual tokens to allow removal of stopwords by list comprehension Stopword_Filtered_List = [word for word in text_tokens if not word in all_stopwords] # removes stopwords row = (" ").join(Stopword_Filtered_List) # returns abstract to string form removechars = ['[', ']', '{', '}', ';', '(', ')', ',', '.', ':', '/', '-', '#', '?', '@', '£', '$'] for char in removechars: row = list(map(lambda x: x.replace(char, ''), row)) row = ''.join(row) wnum = row.split(' ') wnum = [x.lower() for x in wnum] #remove duplicate words wnum = list(dict.fromkeys(wnum)) #removing numbers wonum = [] for x in wnum: xv = list(x) xv = [i.isnumeric() for i in xv] if True in xv: continue else: wonum.append(x) row = ' '.join(wonum) l = [noNaN_row[-1], row] cleaneddf.loc[len(cleaneddf)] = l cleaneddf = cleaneddf.drop_duplicates(subset=['Description']) cleaneddf.to_csv('E:/Users/eeo21/Startup/CPC_Classifications_List/additionalcleanedclasses.csv', index=False) return cleaneddf elif type == 'String': text_tokens = word_tokenize(input) # splits abstracts into individual tokens to allow removal of stopwords by list comprehension Stopword_Filtered_List = [word for word in text_tokens if not word in all_stopwords] # removes stopwords row = (" ").join(Stopword_Filtered_List) # returns abstract to string form removechars = ['[', ']', '{', '}', ';', '(', ')', ',', '.', ':', '/', '-', '#', '?', '@', '£', '$'] for char in removechars: row = list(map(lambda x: x.replace(char, ''), row)) row = ''.join(row) wnum = row.split(' ') wnum = [x.lower() for x in wnum] # remove duplicate words wnum = list(dict.fromkeys(wnum)) # removing numbers wonum = [] for x in wnum: xv = list(x) xv = [i.isnumeric() for i in xv] if True in xv: continue else: wonum.append(x) row = ' '.join(wonum) return row ### Mean Pooler """ Performs a mean pooling to reduce dimension of embedding """ def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return tf.reduce_sum(token_embeddings * input_mask_expanded, 1) / tf.clip_by_value(input_mask_expanded.sum(1), clip_value_min=1e-9, clip_value_max=math.inf) ### Sentence Embedder def sentence_embedder(sentences, model_path): """ Calling the sentence similarity model to generate embeddings on input text. :param sentences: takes input text in the form of a string :param model_path: path to the text similarity model :return returns a (1, 384) embedding of the input text """ tokenizer = AutoTokenizer.from_pretrained(model_path) #instantiating the sentence embedder using HuggingFace library model = AutoModel.from_pretrained(model_path, from_tf=True) #making a model instance encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) #outputs a (1, 384) tensor representation of input text return sentence_embeddings ### Sentence Embedding Preparation Function def convert_saved_embeddings(embedding_string): """ Preparing pre-computed embeddings for use for comparison with new abstract embeddings . Pre-computed embeddings are saved as tensors in string format so need to be converted back to numpy arrays in order to calculate cosine similarity. :param embedding_string: :return: Should be a single tensor with dims (,384) in string formate """ embedding = embedding_string.replace('(', '') embedding = embedding.replace(')', '') embedding = embedding.replace('[', '') embedding = embedding.replace(']', '') embedding = embedding.replace('tensor', '') embedding = embedding.replace(' ', '') embedding = embedding.split(',') embedding = [float(x) for x in embedding] embedding = np.array(embedding) embedding = np.expand_dims(embedding, axis=0) embedding = torch.from_numpy(embedding) return embedding ### Generating Class Embeddings Model_Path = 'Model_bert' ### Insert Path to MODEL DIRECTORY here def class_embbedding_generator(classes): """ This function is to be used to generate and save class embeddings Takes an input of 'cleaned' classes, generated by clean_data function, and computes vector representations of these classes (the embeddings) and saves them to csv :classes: Classes should be a dataframe including all of broad scope classes that are intended to be used to make comparisons with """ class_embeddings = pd.DataFrame(columns=['Class', 'Description', 'Embedding']) for i in range(len(classes)): class_name = classes.iloc[i, 0] print(class_name) class_description = classes.iloc[i, 1] class_description_embedding = sentence_embedder(class_description, Model_Path) class_description_embedding = class_description_embedding.numpy() class_description_embedding = torch.from_numpy(class_description_embedding) embedding_entry = [class_name, class_description, class_description_embedding] class_embeddings.loc[len(class_embeddings)] = embedding_entry ### Broad Scope Classifier Model_Path = 'Model_bert' ### Insert Path to MODEL DIRECTORY here def broad_scope_class_predictor(class_embeddings, abstract_embedding, N=5, Sensitivity='Medium'): """ Takes in pre-computed class embeddings and abstract texts, converts abstract text into :param class_embeddings: dataframe of class embeddings :param abstract: a single abstract embedding :param N: N highest matching classes to return, from highest to lowest, default is 5 :return: predictions: a full dataframe of all the predictions on the 9500+ classes, HighestSimilarity: Dataframe of the N most similar classes """ predictions = pd.DataFrame(columns=['Class Name', 'Score']) for i in range(len(class_embeddings)): class_name = class_embeddings.iloc[i, 0] embedding = class_embeddings.iloc[i, 2] embedding = convert_saved_embeddings(embedding) abstract_embedding = abstract_embedding.numpy() abstract_embedding = torch.from_numpy(abstract_embedding) cos = torch.nn.CosineSimilarity(dim=1) score = cos(abstract_embedding, embedding).numpy().tolist() result = [class_name, score[0]] predictions.loc[len(predictions)] = result greenpredictions = predictions.tail(52) if Sensitivity == 'High': Threshold = 0.5 elif Sensitivity == 'Medium': Threshold = 0.40 elif Sensitivity == 'Low': Threshold = 0.35 GreenLikelihood = 'False' for i in range(len(greenpredictions)): score = greenpredictions.iloc[i, 1] if float(score) >= Threshold: GreenLikelihood = 'True' break else: continue HighestSimilarity = predictions.nlargest(N, ['Score']) print(HighestSimilarity) print(GreenLikelihood) return predictions, HighestSimilarity, GreenLikelihood