Spaces:
Runtime error
Runtime error
File size: 7,340 Bytes
a1bc39d 2bde9e1 a1bc39d 7f2ec6d 09d37d3 fa485ee 7f2ec6d fa485ee 7f2ec6d 9420ba3 7f2ec6d 914a779 7f2ec6d 3eb58cd b1b3f71 3fbe817 b1b3f71 9224ffd b24494c 4ca8440 5bdbc1f 3eb58cd fd71939 b1b3f71 3eb58cd b1b3f71 3eb58cd 3c56f3a 21d804e 9907d16 9224ffd b1b3f71 9224ffd 5b4db95 3c56f3a 9907d16 5b4db95 9224ffd b1b3f71 9224ffd 5b4db95 9907d16 5b4db95 9808a5f 9224ffd 9808a5f 9224ffd 3eb58cd 9907d16 3eb58cd 5bdbc1f 9224ffd 5bdbc1f 9224ffd 5bdbc1f 92d4436 9224ffd 9907d16 92d4436 9907d16 4ca8440 f076e4f 92d4436 4ca8440 92d4436 4ca8440 f076e4f 38098e8 b1b3f71 99c33b8 e5a45fc 914a779 e5a45fc 7f2ec6d e5a45fc a1bc39d 7f2ec6d a1bc39d 8e7188b 38098e8 212ca5f 38098e8 212ca5f 38098e8 61c7a4c bef2a73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import gradio as gr
from tridentmodel import classification
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def add_file(history, file):
history = history + [((file.name,), None)]
return history
def bot(history):
response = "**That's cool!**"
history[-1][1] = response
return history
"""
Place holder alpaca model trained example:
Required:
!pip install -q datasets loralib sentencepiece
!pip install -q git+https://github.com/zphang/transformers@c3dc391
!pip install bitsandbytes
"""
'''
tokenizer = LLaMATokenizer.from_pretrained("chavinlo/alpaca-native")
model = LLaMAForCausalLM.from_pretrained(
"chavinlo/alpaca-native",
load_in_8bit=True,
device_map="auto",
)
'''
########## LOADING PRE-COMPUTED EMBEDDINGS ##########
class_embeddings = pd.read_csv('Embeddings/MainClassEmbeddings.csv')
abstract = """
#Described herein are strength characteristics and biodegradation of articles produced using one or more “green” sustainable polymers and one or more carbohydrate-based polymers. A compatibilizer can optionally be included in the article. In some cases, the article can include a film, a bag, a bottle, a cap or lid therefore, a sheet, a box or other container, a plate, a cup, utensils, or the like.
"""
abstract= classification.clean_data(abstract, type='String')
abstract_embedding = classification.sentence_embedder(abstract, Model_Path)
Number = 10
broad_scope_predictions = classification.broad_scope_class_predictor(class_embeddings, abstract_embedding, Number, Sensitivity='High')
print(broad_scope_class_predictor)
def generateresponse(history):
"""
Model definition here:
"""
'''
global model
global tokenizer
PROMPT = f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{user}
### Response:"""
inputs = tokenizer(
PROMPT,
return_tensors="pt",
)
input_ids = inputs["input_ids"].cuda()
generation_config = GenerationConfig(
temperature=0.6,
top_p=0.95,
repetition_penalty=1.15,
)
print("Generating...")
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=256,
)
output = []
for s in generation_output.sequences:
outputs.append(tokenizer.decode(s))
print(tokenizer.decode(s))
output = (outputs[0].split('### Response:'))[1]
'''
user = history[-1][0]
response = f"You asked: {user}"
history[-1][1] = response
print(history)
return history
theme = gr.themes.Base(
primary_hue="indigo",
).set(
prose_text_size='*text_sm'
)
with gr.Blocks(title='Claimed', theme=theme) as demo:
gr.Markdown("""
# CLAIMED - A GENERATIVE TOOLKIT FOR PATENT ATTORNEYS
The patenting process can by incredibly time-consuming and expensive. We're on a mission to change that.
Welcome to our demo! We've trained Meta's Llama on over 200k entries, with a focus on tasks related to the intellectual property domain.
Please note that this is for research purposes and shouldn't be used commercially.
None of the outputs of this model, taken in part or in its entirety, constitutes legal advice. If you are seeking protection for you intellectual property, consult a registered patent/trademark attorney.
""")
with gr.Tab("Claim Drafter"):
gr.Markdown("""
Use this tool to turn your idea into a patent claim.
""")
with gr.Row(scale=1, min_width=600):
text1 = gr.Textbox(label="Input",
placeholder='Type in your idea here!')
text2 = gr.Textbox(label="Output")
with gr.Tab("Description Generator"):
gr.Markdown("""
Use this tool to expand your patent claim into a description.
You can also use this tool to generate abstracts and give you ideas about the benefit of an invention by changing the settings in the dropdown menu.
""")
with gr.Row(scale=1, min_width=600):
text1 = gr.Textbox(label="Input",
placeholder='Type in your idea here!')
text2 = gr.Textbox(label="Output")
with gr.Tab("Knowledge Graph"):
gr.Markdown("""
Use this tool to
""")
with gr.Row(scale=1, min_width=600):
text1 = gr.Textbox(label="Input",
placeholder='Type in your idea here!')
text2 = gr.Textbox(label="Output")
with gr.Tab("Prosecution Ideator"):
gr.Markdown("""
Below is our
Example input: A device to help the visually impaired using proprioception.
Output:
""")
with gr.Row(scale=1, min_width=600):
text1 = gr.Textbox(label="Input",
placeholder='Type in your idea here!')
text2 = gr.Textbox(label="Output")
with gr.Tab("Claimed Infill"):
gr.Markdown("""
Below is our
Example input: A device to help the visually impaired using proprioception.
Output:
""")
with gr.Row(scale=1, min_width=600):
text1 = gr.Textbox(label="Input",
placeholder='Type in your idea here!')
text2 = gr.Textbox(label="Output")
with gr.Tab("CPC Classifier"):
gr.Markdown("""
Use this tool to classify your invention according to Cooperative Patent Classification system.
""")
with gr.Row(scale=1, min_width=600):
text1 = gr.Textbox(label="Input",
placeholder='Type in your Claim/Description/Abstract Here')
text2 = gr.Textbox(label="Output")
gr.Markdown("""
# THE CHATBOT
Do you want a bit more freedom over the outputs you generate? No worries, you can use a chatbot version of our model below. You can ask it anything.
If you're concerned about a particular output, hit the flag button and we will use that information to improve the model.
""")
chatbot = gr.Chatbot([], elem_id="Claimed Assistant").style(height=200)
with gr.Row():
with gr.Column(scale=0.85):
txt = gr.Textbox(
show_label=False,
placeholder="Enter text and submit",
).style(container=False)
with gr.Column(scale=0.15, min_width=0):
btn = gr.Button("Submit")
txt.submit(add_text, [chatbot, txt], [chatbot, txt]).then(
generateresponse, chatbot, chatbot
)
gr.Markdown("""
# HAVE AN IDEA? GET IT CLAIMED
In the future, we are looking to expand our model's capabilities further to assist in a range of IP related tasks.
If you are interested in using a more powerful model that we have trained, or if you have any suggestions of features you would like to see us add, please get in touch!
As far as data is concerned, you have nothing to worry about! We don't store any of your inputs to use for further training, we're not OpenAI.
""")
demo.launch() |