Spaces:
Runtime error
Runtime error
File size: 6,137 Bytes
a1bc39d 7f2ec6d 3eb58cd 7f2ec6d 3fbe817 21d804e 3eb58cd 9224ffd 4ca8440 9224ffd 4ca8440 3fbe817 9224ffd 4ca8440 17291f6 4ca8440 b24494c 4ca8440 21d804e 3fbe817 21d804e 3eb58cd fd71939 17291f6 3eb58cd fd71939 3eb58cd 21d804e 9907d16 9224ffd 3fbe817 9224ffd 5b4db95 3fbe817 9907d16 5b4db95 9224ffd 9907d16 9224ffd 5b4db95 9907d16 5b4db95 9808a5f 9224ffd 9808a5f 9224ffd 3eb58cd 9907d16 3eb58cd 9808a5f 9907d16 9224ffd 9907d16 4ca8440 f076e4f 4ca8440 b24494c 4ca8440 f076e4f 5da4835 e5a45fc 99c33b8 e5a45fc 7f2ec6d e5a45fc a1bc39d 7f2ec6d a1bc39d 8e7188b bef2a73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import gradio as gr
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def add_file(history, file):
history = history + [((file.name,), None)]
return history
def bot(history):
response = "**That's cool!**"
history[-1][1] = response
return history
"""
Alpaca model trained: example (n.b. can upload mine as a HF model to load from?)
"""
'''
from peft import PeftModel
from transformers import LLaMATokenizer, LLaMAForCausalLM, GenerationConfig
tokenizer = LLaMATokenizer.from_pretrained("chavinlo/alpaca-native")
model = LLaMAForCausalLM.from_pretrained(
"chavinlo/alpaca-native",
load_in_8bit=True,
device_map="auto",
)
'''
def generateresponse(history):
"""
Model definition here:
"""
'''
global model
global tokenizer
PROMPT = f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{user}
### Response:"""
inputs = tokenizer(
PROMPT,
return_tensors="pt",
)
input_ids = inputs["input_ids"].cuda()
generation_config = GenerationConfig(
temperature=0.6,
top_p=0.95,
repetition_penalty=1.15,
)
print("Generating...")
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=256,
)
output = []
for s in generation_output.sequences:
outputs.append(tokenizer.decode(s))
print(tokenizer.decode(s))
output = (outputs[0].split('### Response:'))[1]
'''
user = history[-1][0]
response = f"you asked: {user}"
history[-1][1] = response
print(history)
return history
theme = gr.themes.Base(
primary_hue="indigo",
).set(
prose_text_size='*text_sm'
)
with gr.Blocks(title='Claimed', theme=theme) as demo:
gr.Markdown("""
### CLAIMED - A GENERATIVE TOOLKIT FOR PATENT ATTORNEYS
Hey there, genius!
Welcome to our demo! We've trained Meta's Llama on almost 200k data entries in the question/answer format.
In the future, we are looking to expand our model's capabilities further to assist in a range of IP related tasks.
If you are interested in using a more powerful model that we have trained, or you have any suggestions of features you would like to see us add, please get in touch!
As far as data is concerned, you have nothing to worry about! We don't store any of your inputs to use for further training, we're not OpenAI 👀. We'd just like to know if this is something people would be interested in using!
Please note that this is for research purposes and shouldn't be used commercially.
None of the outputs should be taken as solid legal advice. If you are an inventor looking to patent an invention, always seek the help of a registered patent attorney.
If you
""")
with gr.Tab("Text Drafter"):
gr.Markdown("""
You can use this tool to expand your idea using Claim Language.
Example input: A device to help the visually impaired using proprioception.
Output:
""")
text_input = gr.Textbox()
text_output = gr.Textbox()
text_button = gr.Button("")
with gr.Tab("Description Generator"):
gr.Markdown("""
Patent descriptions are loooonggg and boring! You can use this tool to
Example input: A device to help the visually impaired using proprioception.
Output:
""")
with gr.Row(scale=1, min_width=600):
text1 = gr.Textbox(label="Input",
placeholder='Type in your idea here!')
text2 = gr.Textbox(label="Output")
with gr.Tab("Knowledge Graph"):
gr.Markdown("""
Are you more of a visual type? Use this tool to generate graphical representations of your ideas and how their features interlink.
Example input: A device to help the visually impaired using proprioception.
Output:
""")
with gr.Row(scale=1, min_width=600):
text1 = gr.Textbox(label="Input",
placeholder='Type in your idea here!')
text2 = gr.Textbox(label="Output")
with gr.Tab("Prosecution Ideator"):
gr.Markdown("""
Below is our
Example input: A device to help the visually impaired using proprioception.
Output:
""")
with gr.Row(scale=1, min_width=600):
text1 = gr.Textbox(label="Input",
placeholder='Type in your idea here!')
text2 = gr.Textbox(label="Output")
with gr.Tab("Claimed Infill"):
gr.Markdown("""
Below is our
Example input: A device to help the visually impaired using proprioception.
Output:
""")
with gr.Row(scale=1, min_width=600):
text1 = gr.Textbox(label="Input",
placeholder='Type in your idea here!')
text2 = gr.Textbox(label="Output")
gr.Markdown("""
# THE CHATBOT
Do you want a bit more freedom over the outputs you generate? No worries, you can use a chatbot version of our model below. You can ask it anything by the way, just try to keep it PG.
If you're concerned about an output from the model, hit the flag button and we will use that information to improve the model.
""")
chatbot = gr.Chatbot([], elem_id="Claimed Assistant").style(height=500)
with gr.Row():
with gr.Column(scale=0.85):
txt = gr.Textbox(
show_label=False,
placeholder="Enter text and press enter, or upload an image",
).style(container=False)
with gr.Column(scale=0.15, min_width=0):
btn = gr.Button("Submit")
txt.submit(add_text, [chatbot, txt], [chatbot, txt]).then(
generateresponse, chatbot, chatbot
)
demo.launch() |