import streamlit as st import pandas as pd """ Result table of the Multi Project Matching """ def show_multi_table(p1_df, p2_df): """ p1_df & p2_df from functions/multi_project_matching """ st.write("------------------") p1_df = p1_df.reset_index(drop=True) p2_df = p2_df.reset_index(drop=True) # Convert orga_abbreviation to uppercase for the selected project p2_df['orga_abbreviation'] = p2_df['orga_abbreviation'].str.upper() p1_df['orga_abbreviation'] = p1_df['orga_abbreviation'].str.upper() actual_ind = 0 # Loop to display every matching pair from p1 and p2 dfs for i in range(0, len(p1_df), 2): # stepsize 2 to not display duplicates actual_ind += 1 match_df = pd.DataFrame() row_from_p1 = p1_df.iloc[[i]] row_from_p2 = p2_df.iloc[[i]] # INTEGRATE IN PREPROCESSING !!! # transform strings to list """ Add this to preprocessing - flag url - crs code lists """ try: row_from_p1["crs_3_code_list"] = [row_from_p1['crs_3_name'].item().split(";")[:-1]] row_from_p2["crs_3_code_list"] = [row_from_p2['crs_3_name'].item().split(";")[:-1]] except: row_from_p1["crs_3_code_list"] = [""] row_from_p2["crs_3_code_list"] = [""] try: row_from_p1["crs_5_code_list"] = [row_from_p1['crs_5_name'].item().split(";")[:-1]] row_from_p2["crs_5_code_list"] = [row_from_p2['crs_5_name'].item().split(";")[:-1]] except: row_from_p1["crs_5_code_list"] = [""] row_from_p2["crs_5_code_list"] = [""] row_from_p1["sdg_list"] = [row_from_p1['sgd_pred_code'].item()] row_from_p2["sdg_list"] = [row_from_p2['sgd_pred_code'].item()] # Check for missing country and set flag URL accordingly def get_flag_url(country): if pd.isna(country) or country.strip() == "": return "" return f"https://flagicons.lipis.dev/flags/4x3/{country[:2].lower()}.svg" row_from_p1["flag"] = get_flag_url(row_from_p1['country'].item()) row_from_p2["flag"] = get_flag_url(row_from_p2['country'].item()) # concat p1_df and p2_df rows match_df = pd.concat([row_from_p1, row_from_p2], ignore_index=True) col1, col2 = st.columns([1, 12]) # MATCHING INFOS with col1: # remove arrow from standard st.metric() st.write( """ """, unsafe_allow_html=True, ) st.metric(label="Match", value=f"{actual_ind}", delta=f"~ {str(round(row_from_p1['similarity'].item(), 5) * 100)[:4]} %") # MATCHING Project Informations as table with col2: st.write(" ") st.dataframe( match_df[["iati_id", "title_main", "orga_abbreviation", "description_main", "country_name", "flag", "sdg_list", "crs_3_code_list", "crs_5_code_list", "Project Link"]], use_container_width=True, height=35 + 35 * len(match_df), column_config={ "iati_id": st.column_config.TextColumn( "IATI ID", help="IATI Project ID", disabled=True, width="small" ), "orga_abbreviation": st.column_config.TextColumn( "Organization", help="If description not in English, description in other language provided", disabled=True, width="small" ), "title_main": st.column_config.TextColumn( "Title", help="If title not in English, title in other language provided", disabled=True, width="large" ), "description_main": st.column_config.TextColumn( "Description", help="If description not in English, description in other language provided", disabled=True, width="large" ), "country_name": st.column_config.TextColumn( "Country", help="Country of project", disabled=True, width="small" ), "flag": st.column_config.ImageColumn( "Flag", help="country flag", width="small" ), "sdg_list": st.column_config.ListColumn( "SDG Prediction", help="Prediction of SDG's", width="small" ), "crs_3_code_list": st.column_config.ListColumn( "CRS 3", help="CRS 3 code given by organization", width="medium" ), "crs_5_code_list": st.column_config.ListColumn( "CRS 5", help="CRS 5 code given by organization", width="medium" ), "Project Link": st.column_config.TextColumn( "Project Link", help="Link to the project", disabled=True, width="small" ), }, hide_index=True, ) st.write("------------------")