Spaces:
Running
on
Zero
Running
on
Zero
# -*- coding: utf-8 -*- | |
import json | |
import logging | |
import re | |
import torch | |
from dragonmapper.transcriptions import pinyin_to_ipa | |
from phonemizer.backend import EspeakBackend | |
from pypinyin import pinyin | |
from Preprocessing.articulatory_features import generate_feature_table | |
from Preprocessing.articulatory_features import get_feature_to_index_lookup | |
from Preprocessing.articulatory_features import get_phone_to_id | |
def load_json_from_path(path): # redundant to the one in utils, but necessary to avoid circular imports | |
with open(path, "r", encoding="utf8") as f: | |
obj = json.loads(f.read()) | |
return obj | |
class ArticulatoryCombinedTextFrontend: | |
def __init__(self, | |
language, | |
use_explicit_eos=True, | |
use_lexical_stress=True, | |
silent=True, | |
add_silence_to_end=True, | |
use_word_boundaries=True, | |
device="cpu"): | |
""" | |
Mostly preparing ID lookups | |
""" | |
# this locks the device, so it has to happen here and not at the top | |
from transphone.g2p import read_g2p | |
self.language = language | |
self.use_explicit_eos = use_explicit_eos | |
self.use_stress = use_lexical_stress | |
self.add_silence_to_end = add_silence_to_end | |
self.use_word_boundaries = use_word_boundaries | |
register_to_height = { | |
"˥": 5, | |
"˦": 4, | |
"˧": 3, | |
"˨": 2, | |
"˩": 1 | |
} | |
self.rising_perms = list() | |
self.falling_perms = list() | |
self.peaking_perms = list() | |
self.dipping_perms = list() | |
for first_tone in ["˥", "˦", "˧", "˨", "˩"]: | |
for second_tone in ["˥", "˦", "˧", "˨", "˩"]: | |
if register_to_height[first_tone] > register_to_height[second_tone]: | |
self.falling_perms.append(first_tone + second_tone) | |
else: | |
self.rising_perms.append(first_tone + second_tone) | |
for third_tone in ["˥", "˦", "˧", "˨", "˩"]: | |
if register_to_height[first_tone] > register_to_height[second_tone] < register_to_height[third_tone]: | |
self.dipping_perms.append(first_tone + second_tone + third_tone) | |
elif register_to_height[first_tone] < register_to_height[second_tone] > register_to_height[third_tone]: | |
self.peaking_perms.append(first_tone + second_tone + third_tone) | |
if language == "eng" or language == "en-us": | |
self.g2p_lang = "en-us" # English as spoken in USA | |
self.expand_abbreviations = english_text_expansion | |
self.phonemizer = "espeak" | |
else: | |
# blanket solution for the rest | |
print("Using Transphone. A specialized phonemizer might work better.") | |
self.g2p_lang = language | |
self.phonemizer = "transphone" | |
self.expand_abbreviations = lambda x: x | |
self.transphone = read_g2p(device=device) | |
# remember to also update get_language_id() below when adding something here, as well as the get_example_sentence function | |
if self.phonemizer == "espeak": | |
try: | |
self.phonemizer_backend = EspeakBackend(language=self.g2p_lang, | |
punctuation_marks=';:,.!?¡¿—…()"«»“”~/。【】、‥،؟“”؛', | |
preserve_punctuation=True, | |
language_switch='remove-flags', | |
with_stress=self.use_stress, | |
logger=logging.getLogger(__file__)) | |
except RuntimeError: | |
print("Error in loading espeak! \n" | |
"Maybe espeak is not installed on your system? \n" | |
"Falling back to transphone.") | |
from transphone.g2p import read_g2p | |
self.g2p_lang = self.language | |
self.phonemizer = "transphone" | |
self.expand_abbreviations = lambda x: x | |
self.transphone = read_g2p() | |
self.phone_to_vector = generate_feature_table() | |
self.phone_to_id = get_phone_to_id() | |
self.id_to_phone = {v: k for k, v in self.phone_to_id.items()} | |
self.text_vector_to_phone_cache = dict() | |
def get_example_sentence(lang): | |
if lang == "eng": | |
return "This is a complex sentence, it even has a pause!" | |
elif lang == "deu": | |
return "Dies ist ein komplexer Satz, er hat sogar eine Pause!" | |
elif lang == "ell": | |
return "Αυτή είναι μια σύνθετη πρόταση, έχει ακόμη και παύση!" | |
elif lang == "spa": | |
return "Esta es una oración compleja, ¡incluso tiene una pausa!" | |
elif lang == "fin": | |
return "Tämä on monimutkainen lause, sillä on jopa tauko!" | |
elif lang == "rus": | |
return "Это сложное предложение, в нем даже есть пауза!" | |
elif lang == "hun": | |
return "Ez egy összetett mondat, még szünet is van benne!" | |
elif lang == "nld": | |
return "Dit is een complexe zin, er zit zelfs een pauze in!" | |
elif lang == "fra": | |
return "C'est une phrase complexe, elle a même une pause !" | |
elif lang == "por": | |
return "Esta é uma frase complexa, tem até uma pausa!" | |
elif lang == "pol": | |
return "To jest zdanie złożone, ma nawet pauzę!" | |
elif lang == "ita": | |
return "Questa è una frase complessa, ha anche una pausa!" | |
elif lang == "cmn": | |
return "这是一个复杂的句子,它甚至包含一个停顿。" | |
elif lang == "vie": | |
return "Đây là một câu phức tạp, nó thậm chí còn chứa một khoảng dừng." | |
else: | |
print(f"No example sentence specified for the language: {lang}\n " | |
f"Please specify an example sentence in the get_example_sentence function in Preprocessing/TextFrontend to track your progress.") | |
return None | |
def string_to_tensor(self, text, view=False, device="cpu", handle_missing=True, input_phonemes=False): | |
""" | |
Fixes unicode errors, expands some abbreviations, | |
turns graphemes into phonemes and then vectorizes | |
the sequence as articulatory features | |
""" | |
if input_phonemes: | |
phones = text | |
else: | |
phones = self.get_phone_string(text=text, include_eos_symbol=True, for_feature_extraction=True) | |
phones = phones.replace("ɚ", "ə").replace("ᵻ", "ɨ") | |
if view: | |
print("Phonemes: \n{}\n".format(phones)) | |
phones_vector = list() | |
# turn into numeric vectors | |
stressed_flag = False | |
for char in phones: | |
# affects following phoneme ----------------- | |
if char.strip() == '\u02C8': | |
# primary stress | |
stressed_flag = True | |
# affects previous phoneme ----------------- | |
elif char.strip() == '\u02D0': | |
# lengthened | |
phones_vector[-1][get_feature_to_index_lookup()["lengthened"]] = 1 | |
elif char.strip() == '\u02D1': | |
# half length | |
phones_vector[-1][get_feature_to_index_lookup()["half-length"]] = 1 | |
elif char.strip() == '\u0306': | |
# shortened | |
phones_vector[-1][get_feature_to_index_lookup()["shortened"]] = 1 | |
elif char.strip() == '̃' and phones_vector[-1][get_feature_to_index_lookup()["nasal"]] != 1: | |
# nasalized (vowel) | |
phones_vector[-1][get_feature_to_index_lookup()["nasal"]] = 2 | |
elif char.strip() == "̧" != phones_vector[-1][get_feature_to_index_lookup()["palatal"]] != 1: | |
# palatalized | |
phones_vector[-1][get_feature_to_index_lookup()["palatal"]] = 2 | |
elif char.strip() == "ʷ" and phones_vector[-1][get_feature_to_index_lookup()["labial-velar"]] != 1: | |
# labialized | |
phones_vector[-1][get_feature_to_index_lookup()["labial-velar"]] = 2 | |
elif char.strip() == "ʰ" and phones_vector[-1][get_feature_to_index_lookup()["aspirated"]] != 1: | |
# aspirated | |
phones_vector[-1][get_feature_to_index_lookup()["aspirated"]] = 2 | |
elif char.strip() == "ˠ" and phones_vector[-1][get_feature_to_index_lookup()["velar"]] != 1: | |
# velarized | |
phones_vector[-1][get_feature_to_index_lookup()["velar"]] = 2 | |
elif char.strip() == "ˁ" and phones_vector[-1][get_feature_to_index_lookup()["pharyngal"]] != 1: | |
# pharyngealized | |
phones_vector[-1][get_feature_to_index_lookup()["pharyngal"]] = 2 | |
elif char.strip() == "ˀ" and phones_vector[-1][get_feature_to_index_lookup()["glottal"]] != 1: | |
# glottalized | |
phones_vector[-1][get_feature_to_index_lookup()["glottal"]] = 2 | |
elif char.strip() == "ʼ" and phones_vector[-1][get_feature_to_index_lookup()["ejective"]] != 1: | |
# ejective | |
phones_vector[-1][get_feature_to_index_lookup()["ejective"]] = 2 | |
elif char.strip() == "̹" and phones_vector[-1][get_feature_to_index_lookup()["rounded"]] != 1: | |
# rounding | |
phones_vector[-1][get_feature_to_index_lookup()["rounded"]] = 2 | |
elif char.strip() == "̞" and phones_vector[-1][get_feature_to_index_lookup()["open"]] != 1: | |
# open | |
phones_vector[-1][get_feature_to_index_lookup()["open"]] = 2 | |
elif char.strip() == "̪" and phones_vector[-1][get_feature_to_index_lookup()["dental"]] != 1: | |
# dental | |
phones_vector[-1][get_feature_to_index_lookup()["dental"]] = 2 | |
elif char.strip() == "̬" and phones_vector[-1][get_feature_to_index_lookup()["voiced"]] != 1: | |
# voiced | |
phones_vector[-1][get_feature_to_index_lookup()["voiced"]] = 2 | |
elif char.strip() == "̝" and phones_vector[-1][get_feature_to_index_lookup()["close"]] != 1: | |
# closed | |
phones_vector[-1][get_feature_to_index_lookup()["close"]] = 2 | |
elif char.strip() == "̰" and phones_vector[-1][get_feature_to_index_lookup()["glottal"]] != 1 and phones_vector[-1][get_feature_to_index_lookup()["epiglottal"]] != 1: | |
# laryngalization | |
phones_vector[-1][get_feature_to_index_lookup()["glottal"]] = 2 | |
phones_vector[-1][get_feature_to_index_lookup()["epiglottal"]] = 2 | |
elif char.strip() == "̈" and phones_vector[-1][get_feature_to_index_lookup()["central"]] != 1: | |
# centralization | |
phones_vector[-1][get_feature_to_index_lookup()["central"]] = 2 | |
elif char.strip() == "̜" and phones_vector[-1][get_feature_to_index_lookup()["unrounded"]] != 1: | |
# unrounded | |
phones_vector[-1][get_feature_to_index_lookup()["unrounded"]] = 2 | |
elif char.strip() == "̥" and phones_vector[-1][get_feature_to_index_lookup()["unvoiced"]] != 1: | |
# voiceless | |
phones_vector[-1][get_feature_to_index_lookup()["unvoiced"]] = 2 | |
elif char.strip() == "˥": | |
# very high tone | |
phones_vector[-1][get_feature_to_index_lookup()["very-high-tone"]] = 1 | |
elif char.strip() == "˦": | |
# high tone | |
phones_vector[-1][get_feature_to_index_lookup()["high-tone"]] = 1 | |
elif char.strip() == "˧": | |
# mid tone | |
phones_vector[-1][get_feature_to_index_lookup()["mid-tone"]] = 1 | |
elif char.strip() == "˨": | |
# low tone | |
phones_vector[-1][get_feature_to_index_lookup()["low-tone"]] = 1 | |
elif char.strip() == "˩": | |
# very low tone | |
phones_vector[-1][get_feature_to_index_lookup()["very-low-tone"]] = 1 | |
elif char.strip() == "⭧": | |
# rising tone | |
phones_vector[-1][get_feature_to_index_lookup()["rising-tone"]] = 1 | |
elif char.strip() == "⭨": | |
# falling tone | |
phones_vector[-1][get_feature_to_index_lookup()["falling-tone"]] = 1 | |
elif char.strip() == "⮁": | |
# peaking tone | |
phones_vector[-1][get_feature_to_index_lookup()["peaking-tone"]] = 1 | |
elif char.strip() == "⮃": | |
# dipping tone | |
phones_vector[-1][get_feature_to_index_lookup()["dipping-tone"]] = 1 | |
else: | |
if handle_missing: | |
try: | |
phones_vector.append(self.phone_to_vector[char].copy()) | |
except KeyError: | |
print("unknown phoneme: {}".format(char)) | |
else: | |
phones_vector.append(self.phone_to_vector[char].copy()) # leave error handling to elsewhere | |
# the following lines try to emulate whispering by removing all voiced features | |
# phones_vector[-1][get_feature_to_index_lookup()["voiced"]] = 0 | |
# phones_vector[-1][get_feature_to_index_lookup()["unvoiced"]] = 1 | |
# the following lines explore what would happen, if the system is told to produce sounds a human cannot | |
# for dim, _ in enumerate(phones_vector[-1]): | |
# phones_vector[-1][dim] = 1 | |
if stressed_flag: | |
stressed_flag = False | |
phones_vector[-1][get_feature_to_index_lookup()["stressed"]] = 1 | |
return torch.Tensor(phones_vector, device=device) | |
def get_phone_string(self, text, include_eos_symbol=True, for_feature_extraction=False, for_plot_labels=False): | |
if text == "": | |
return "" | |
# expand abbreviations | |
utt = self.expand_abbreviations(text) | |
# convert the graphemes to phonemes here | |
if self.phonemizer == "espeak": | |
try: | |
phones = self.phonemizer_backend.phonemize([utt], strip=True)[0] # To use a different phonemizer, this is the only line that needs to be exchanged | |
except: | |
print(f"There was an error with espeak. \nFalling back to transphone.\nSentence: {utt} \nLanguage {self.g2p_lang}") | |
from transphone.g2p import read_g2p | |
self.g2p_lang = self.language | |
self.phonemizer = "transphone" | |
self.expand_abbreviations = lambda x: x | |
self.transphone = read_g2p() | |
return self.get_phone_string(text, include_eos_symbol, for_feature_extraction, for_plot_labels) | |
elif self.phonemizer == "transphone": | |
replacements = [ | |
# punctuation in languages with non-latin script | |
("。", "~"), | |
(",", "~"), | |
("【", '~'), | |
("】", '~'), | |
("、", "~"), | |
("‥", "~"), | |
("؟", "~"), | |
("،", "~"), | |
("“", '~'), | |
("”", '~'), | |
("؛", "~"), | |
("《", '~'), | |
("》", '~'), | |
("?", "~"), | |
("!", "~"), | |
(" :", "~"), | |
(" ;", "~"), | |
("-", "~"), | |
("·", " "), | |
("`", ""), | |
# symbols that indicate a pause or silence | |
('"', "~"), | |
(" - ", "~ "), | |
("- ", "~ "), | |
("-", ""), | |
("…", "~"), | |
(":", "~"), | |
(";", "~"), | |
(",", "~") # make sure this remains the final one when adding new ones | |
] | |
for replacement in replacements: | |
utt = utt.replace(replacement[0], replacement[1]) | |
utt = re.sub("~+", "~", utt) | |
utt = re.sub(r"\s+", " ", utt) | |
utt = re.sub(r"\.+", ".", utt) | |
chunk_list = list() | |
for chunk in utt.split("~"): | |
# unfortunately the transphone tokenizer is not suited for any languages besides English it seems | |
# this is not much better, but maybe a little. | |
word_list = list() | |
for word_by_whitespace in chunk.split(): | |
word_list.append(self.transphone.inference(word_by_whitespace, self.g2p_lang)) | |
chunk_list.append(" ".join(["".join(word) for word in word_list])) | |
phones = "~ ".join(chunk_list) | |
elif self.phonemizer == "dragonmapper": | |
phones = pinyin_to_ipa(utt) | |
# Unfortunately tonal languages don't agree on the tone, most tonal | |
# languages use different tones denoted by different numbering | |
# systems. At this point in the script, it is attempted to unify | |
# them all to the tones in the IPA standard. | |
if self.g2p_lang == "vi": | |
phones = phones.replace('1', "˧") | |
phones = phones.replace('2', "˨˩") | |
phones = phones.replace('ɜ', "˧˥") # I'm fairly certain that this is a bug in espeak and ɜ is meant to be 3 | |
phones = phones.replace('3', "˧˥") # I'm fairly certain that this is a bug in espeak and ɜ is meant to be 3 | |
phones = phones.replace('4', "˦˧˥") | |
phones = phones.replace('5', "˧˩˧") | |
phones = phones.replace('6', "˧˩˨ʔ") # very weird tone, because the tone introduces another phoneme | |
phones = phones.replace('7', "˧") | |
elif self.g2p_lang == "yue": | |
phones = phones.replace('1', "˥") | |
phones = phones.replace('2', "˧˥") | |
phones = phones.replace('3', "˧") | |
phones = phones.replace('4', "˧˩") | |
phones = phones.replace('5', "˩˧") | |
phones = phones.replace('6', "˨") | |
# more of this handling for more tonal languages can be added here, simply make an elif statement and check for the language. | |
return self.postprocess_phoneme_string(phones, for_feature_extraction, include_eos_symbol, for_plot_labels) | |
def postprocess_phoneme_string(self, phoneme_string, for_feature_extraction, include_eos_symbol, for_plot_labels): | |
""" | |
Takes as input a phoneme string and processes it to work best with the way we represent phonemes as featurevectors | |
""" | |
replacements = [ | |
# punctuation in languages with non-latin script | |
("。", "."), | |
(",", ","), | |
("【", '"'), | |
("】", '"'), | |
("、", ","), | |
("‥", "…"), | |
("؟", "?"), | |
("،", ","), | |
("“", '"'), | |
("”", '"'), | |
("؛", ","), | |
("《", '"'), | |
("》", '"'), | |
("?", "?"), | |
("!", "!"), | |
(" :", ":"), | |
(" ;", ";"), | |
("-", "-"), | |
("·", " "), | |
# latin script punctuation | |
("/", " "), | |
("—", ""), | |
("(", "~"), | |
(")", "~"), | |
("...", "…"), | |
("\n", ", "), | |
("\t", " "), | |
("¡", ""), | |
("¿", ""), | |
("«", '"'), | |
("»", '"'), | |
# unifying some phoneme representations | |
("N", "ŋ"), # somehow transphone doesn't transform this to IPA | |
("ɫ", "l"), # alveolopalatal | |
("ɚ", "ə"), | |
("g", "ɡ"), | |
("ε", "e"), | |
("ʦ", "ts"), | |
("ˤ", "ˁ"), | |
('ᵻ', 'ɨ'), | |
("ɧ", "ç"), # velopalatal | |
("ɥ", "j"), # labiopalatal | |
("ɬ", "s"), # lateral | |
("ɮ", "z"), # lateral | |
('ɺ', 'ɾ'), # lateral | |
('ʲ', 'j'), # decomposed palatalization | |
('\u02CC', ""), # secondary stress | |
('\u030B', "˥"), | |
('\u0301', "˦"), | |
('\u0304', "˧"), | |
('\u0300', "˨"), | |
('\u030F', "˩"), | |
('\u0302', "⭨"), | |
('\u030C', "⭧"), | |
("꜖", "˩"), | |
("꜕", "˨"), | |
("꜔", "˧"), | |
("꜓", "˦"), | |
("꜒", "˥"), | |
# symbols that indicate a pause or silence | |
('"', "~"), | |
(" - ", "~ "), | |
("- ", "~ "), | |
("-", ""), | |
("…", "."), | |
(":", "~"), | |
(";", "~"), | |
(",", "~") # make sure this remains the final one when adding new ones | |
] | |
unsupported_ipa_characters = {'̙', '̯', '̤', '̩', '̠', '̟', 'ꜜ', '̽', '|', '•', '↘', | |
'‖', '‿', 'ᷝ', 'ᷠ', '̚', '↗', 'ꜛ', '̻', '̘', '͡', '̺'} | |
# https://en.wikipedia.org/wiki/IPA_number | |
for char in unsupported_ipa_characters: | |
replacements.append((char, "")) | |
if not for_feature_extraction: | |
# in case we want to plot etc., we only need the segmental units, so we remove everything else. | |
replacements = replacements + [ | |
('\u02C8', ""), # primary stress | |
('\u02D0', ""), # lengthened | |
('\u02D1', ""), # half-length | |
('\u0306', ""), # shortened | |
("˥", ""), # very high tone | |
("˦", ""), # high tone | |
("˧", ""), # mid tone | |
("˨", ""), # low tone | |
("˩", ""), # very low tone | |
('\u030C', ""), # rising tone | |
('\u0302', ""), # falling tone | |
('⭧', ""), # rising | |
('⭨', ""), # falling | |
('⮃', ""), # dipping | |
('⮁', ""), # peaking | |
('̃', ""), # nasalizing | |
("̧", ""), # palatalized | |
("ʷ", ""), # labialized | |
("ʰ", ""), # aspirated | |
("ˠ", ""), # velarized | |
("ˁ", ""), # pharyngealized | |
("ˀ", ""), # glottalized | |
("ʼ", ""), # ejective | |
("̹", ""), # rounding | |
("̞", ""), # open | |
("̪", ""), # dental | |
("̬", ""), # voiced | |
("̝", ""), # closed | |
("̰", ""), # laryngalization | |
("̈", ""), # centralization | |
("̜", ""), # unrounded | |
("̥", ""), # voiceless | |
] | |
for replacement in replacements: | |
phoneme_string = phoneme_string.replace(replacement[0], replacement[1]) | |
phones = re.sub("~+", "~", phoneme_string) | |
phones = re.sub(r"\s+", " ", phones) | |
phones = re.sub(r"\.+", ".", phones) | |
phones = phones.lstrip("~").rstrip("~") | |
# peaking tones | |
for peaking_perm in self.peaking_perms: | |
phones = phones.replace(peaking_perm, "⮁".join(peaking_perm)) | |
# dipping tones | |
for dipping_perm in self.dipping_perms: | |
phones = phones.replace(dipping_perm, "⮃".join(dipping_perm)) | |
# rising tones | |
for rising_perm in self.rising_perms: | |
phones = phones.replace(rising_perm, "⭧".join(rising_perm)) | |
# falling tones | |
for falling_perm in self.falling_perms: | |
phones = phones.replace(falling_perm, "⭨".join(falling_perm)) | |
if self.add_silence_to_end: | |
phones += "~" # adding a silence in the end during inference produces more natural sounding prosody | |
if include_eos_symbol: | |
phones += "#" | |
if not self.use_word_boundaries: | |
phones = phones.replace(" ", "") | |
if for_plot_labels: | |
phones = phones.replace(" ", "|") | |
phones = "~" + phones | |
phones = re.sub("~+", "~", phones) | |
return phones | |
def text_vectors_to_id_sequence(self, text_vector): | |
tokens = list() | |
for vector in text_vector: | |
if vector[get_feature_to_index_lookup()["word-boundary"]] == 0: | |
# we don't include word boundaries when performing alignment, since they are not always present in audio. | |
features = vector.cpu().numpy().tolist() | |
immutable_vector = tuple(features) | |
if immutable_vector in self.text_vector_to_phone_cache: | |
tokens.append(self.phone_to_id[self.text_vector_to_phone_cache[immutable_vector]]) | |
continue | |
features = features[13:] | |
# the first 12 dimensions are for modifiers, so we ignore those when trying to find the phoneme in the ID lookup | |
for index in range(len(features)): | |
if features[index] == 2: | |
# we remove all features that stem from a modifier, so we can map back to the unmodified sound | |
features[index] = 0 | |
for phone in self.phone_to_vector: | |
if features == self.phone_to_vector[phone][13:]: | |
tokens.append(self.phone_to_id[phone]) | |
self.text_vector_to_phone_cache[immutable_vector] = phone | |
# this is terribly inefficient, but it's fine, since we're building a cache over time that makes this instant | |
break | |
return tokens | |
def english_text_expansion(text): | |
return text | |
def remove_french_spacing(text): | |
text = text.replace(" »", '"').replace("« ", '"') | |
for punc in ["!", ";", ":", ".", ",", "?", "-"]: | |
text = text.replace(f" {punc}", punc) | |
return text | |
def convert_kanji_to_pinyin_mandarin(text): | |
return " ".join([x[0] for x in pinyin(text)]) | |
def get_language_id(language): | |
try: | |
iso_codes_to_ids = load_json_from_path("Preprocessing/multilinguality/iso_lookup.json")[-1] | |
except FileNotFoundError: | |
try: | |
iso_codes_to_ids = load_json_from_path("multilinguality/iso_lookup.json")[-1] | |
except FileNotFoundError: | |
iso_codes_to_ids = load_json_from_path("iso_lookup.json")[-1] | |
if language not in iso_codes_to_ids: | |
print("Please specify the language as ISO 639-3 code (https://en.wikipedia.org/wiki/List_of_ISO_639-3_codes)") | |
return None | |
return torch.LongTensor([iso_codes_to_ids[language]]) | |
if __name__ == '__main__': | |
print("\n\nEnglish Test") | |
tf = ArticulatoryCombinedTextFrontend(language="eng") | |
tf.string_to_tensor("This is a complex sentence, it even has a pause! But can it do this? Nice.", view=True) | |
print("\n\nChinese Test") | |
tf = ArticulatoryCombinedTextFrontend(language="cmn") | |
tf.string_to_tensor("这是一个复杂的句子,它甚至包含一个停顿。", view=True) | |
tf.string_to_tensor("李绅 《悯农》 锄禾日当午, 汗滴禾下土。 谁知盘中餐, 粒粒皆辛苦。", view=True) | |
tf.string_to_tensor("巴 拔 把 爸 吧", view=True) | |
print("\n\nVietnamese Test") | |
tf = ArticulatoryCombinedTextFrontend(language="vie") | |
tf.string_to_tensor("Xin chào thế giới, quả là một ngày tốt lành để học nói tiếng Việt!", view=True) | |
tf.string_to_tensor("ba bà bá bạ bả bã", view=True) | |
print("\n\nJapanese Test") | |
tf = ArticulatoryCombinedTextFrontend(language="jpn") | |
tf.string_to_tensor("医師会がなくても、近隣の病院なら紹介してくれると思います。", view=True) | |
print(tf.get_phone_string("医師会がなくても、近隣の病院なら紹介してくれると思います。")) | |
print("\n\nZero-Shot Test") | |
tf = ArticulatoryCombinedTextFrontend(language="acr") | |
tf.string_to_tensor("I don't know this language, but this is just a dummy text anyway.", view=True) | |
print(tf.get_phone_string("I don't know this language, but this is just a dummy text anyway.")) | |