Spaces:
Runtime error
Runtime error
File size: 6,312 Bytes
9d11120 eea32c6 9d11120 eea32c6 9d11120 d2d8f6c eea32c6 9f8136b 9d11120 6e7ba4c 9f8136b 9d11120 9f8136b 9d11120 927a203 d2d8f6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import gdown
import gradio as gr
import logging
import os
import cv2
import numpy as np
import tensorflow as tf
from ai.detection import detect
from laeo_per_frame.interaction_per_frame_uncertainty import LAEO_computation
from utils.hpe import hpe, project_ypr_in2d
from utils.img_util import resize_preserving_ar, draw_detections, percentage_to_pixel, draw_key_points_pose, \
visualize_vector
def load_image(camera, ):
# Capture the video frame by frame
try:
ret, frame = camera.read()
return True, frame
except:
logging.Logger('Error reading frame')
return False, None
def demo_play(img, laeo=True, rgb=False):
# webcam in use
# gpus = tf.config.list_physical_devices('GPU')
# img = np.array(frame)
if not rgb:
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
img_resized, new_old_shape = resize_preserving_ar(img, input_shape_od_model)
print('inference centernet')
detections, elapsed_time = detect(model, img_resized, min_score_thresh,
new_old_shape) # detection classes boxes scores
# probably to draw on resized
img_with_detections = draw_detections(img_resized, detections, max_boxes_to_draw, None, None, None)
# cv2.imshow("aa", img_with_detections)
det, kpt = percentage_to_pixel(img.shape, detections['detection_boxes'], detections['detection_scores'],
detections['detection_keypoints'], detections['detection_keypoint_scores'])
# center_xy, yaw, pitch, roll = head_pose_estimation(kpt, 'centernet', gaze_model=gaze_model)
# _________ extract hpe and print to img
people_list = []
print('inferece hpe')
for j, kpt_person in enumerate(kpt):
yaw, pitch, roll, tdx, tdy = hpe(gaze_model, kpt_person, detector='centernet')
# img = draw_axis_3d(yaw[0].numpy()[0], pitch[0].numpy()[0], roll[0].numpy()[0], image=img, tdx=tdx, tdy=tdy,
# size=50)
people_list.append({'yaw' : yaw[0].numpy()[0],
'yaw_u' : 0,
'pitch' : pitch[0].numpy()[0],
'pitch_u' : 0,
'roll' : roll[0].numpy()[0],
'roll_u' : 0,
'center_xy': [tdx, tdy]
})
for i in range(len(det)):
img = draw_key_points_pose(img, kpt[i])
# call LAEO
clip_uncertainty = 0.5
binarize_uncertainty = False
if laeo:
interaction_matrix = LAEO_computation(people_list, clipping_value=clip_uncertainty,
clip=binarize_uncertainty)
else:
interaction_matrix = np.zeros((len(people_list), len(people_list)))
# coloured arrow print per person
for index, person in enumerate(people_list):
green = round((max(interaction_matrix[index, :])) * 255)
colour = (0, green, 0)
if green < 40:
colour = (0, 0, 255)
vector = project_ypr_in2d(person['yaw'], person['pitch'], person['roll'])
img = visualize_vector(img, person['center_xy'], vector, title="",
color=colour)
return img
if __name__=='__main__':
if not os.path.exists("LAEO_demo_data"):
gdown.download_folder("https://drive.google.com/drive/folders/1nQ1Cb_tBEhWxy183t-mIcVH7AhAfa6NO?usp=drive_link",
use_cookies=False)
# Get the list of all files and directories
path = "LAEO_demo_data/examples"
dir_list = os.listdir(path)
print("Files and directories in '", path, "' :")
# prints all files
print(dir_list)
gaze_model_path = 'LAEO_demo_data/head_pose_estimation'
gaze_model = tf.keras.models.load_model(gaze_model_path, custom_objects={"tf": tf})
path_to_model = 'LAEO_demo_data/keypoint_detector/centernet_hg104_512x512_kpts_coco17_tpu-32'
model = tf.saved_model.load(os.path.join(path_to_model, 'saved_model'))
input_shape_od_model = (512, 512)
# params
min_score_thresh, max_boxes_to_draw, min_distance = .45, 50, 1.5
print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))
demo_webcam = gr.Interface(
fn=demo_play,
inputs=[gr.Image(source="webcam"), # with no streaming-> acquire images
gr.Checkbox(value=True, label="LAEO", info="Compute and display LAEO"),
gr.Checkbox(value=False, label="rgb", info="Display output on W/B image"),
],
outputs="image",
live=True,
title="Head Pose Estimation and LAEO",
description="This is a demo developed by Federico Figari T. at MaLGa Lab, University of Genoa, Italy. You can choose to have only the Head Pose Estimation or also the LAEO computation (more than 1 person should be in the image). You need to take a picture and the algorithm will calculate the Head Pose and will be showed as an arrow on your face. LAEO, instead is showed colouring the arrow in green.",
)
demo_upload = gr.Interface(
fn=demo_play,
inputs=[gr.Image(source="upload", ), # with no streaming-> acquire images
gr.Checkbox(value=True, label="LAEO", info="Compute and display LAEO"),
gr.Checkbox(value=False, label="rgb", info="Display output on W/B image"),
],
outputs="image",
live=True,
title="Head Pose Estimation and LAEO",
description="This is a demo developed by Federico Figari T. at MaLGa Lab, University of Genoa, Italy. You can choose to have only the Head Pose Estimation or also the LAEO computation (more than 1 person should be in the image). You need to upload an image and the algorithm will calculate the Head Pose and will be showed as an arrow on your face. LAEO, instead is showed colouring the arrow in green.",
examples=[["LAEO_demo_data/examples/1.jpg"], ["LAEO_demo_data/examples/20.jpg"]]
)
demo_tabbed = gr.TabbedInterface([demo_webcam, demo_upload], ["Demo from webcam", "Demo from upload"])
demo_tabbed.launch() |