File size: 27,789 Bytes
9d11120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
import cv2
import os
import json
import numpy as np
from math import cos, sin, pi
from utils.labels import coco_category_index, rgb_colors, color_pose, color_pose_normalized, pose_id_part, face_category_index, body_parts_openpose, body_parts, face_points, face_points_openpose, pose_id_part_zedcam, face_points_zedcam, body_parts_zedcam
# from src.utils.my_utils import fit_plane_least_square  # , retrieve_line_from_two_points


def percentage_to_pixel(shape, bb_boxes, bb_boxes_scores, key_points=None, key_points_score=None):
    """
    Convert the detections from percentage to pixels coordinates; it works both for the bounding boxes and for the key points if passed

    Args:
        :img_shape (tuple): the shape of the image
        :bb_boxes (numpy.ndarray): list of list each one representing the bounding box coordinates expressed in percentage [y_min_perc, x_min_perc, y_max_perc, x_max_perc]
        :bb_boxes_scores (numpy.ndarray): list of score for each bounding box in range [0, 1]
        :key_points (numpy.ndarray): list of list of list each one representing the key points coordinates expressed in percentage [y_perc, x_perc]
        :key_points_score (numpy.ndarray): list of list each one representing the score associated to each key point in range [0, 1]

    Returns:
        :det (numpy.ndarray): list of lists each one representing the bounding box coordinates in pixels and the score associated to each bounding box [x_min, y_min, x_max, y_max, score]
        :kpt (list): list of lists each one representing the key points detected in pixels and the score associated to each point [x, y, score]
    """

    im_width, im_height = shape[1], shape[0]
    det, kpt = [], []

    if key_points is not None:
        key_points = key_points
        key_points_score = key_points_score

    for i, _ in enumerate(bb_boxes):
        y_min, x_min, y_max, x_max = bb_boxes[i]
        x_min_rescaled, x_max_rescaled, y_min_rescaled, y_max_rescaled = x_min * im_width, x_max * im_width, y_min * im_height, y_max * im_height
        det.append([int(x_min_rescaled), int(y_min_rescaled), int(x_max_rescaled), int(y_max_rescaled), bb_boxes_scores[i]])

        if key_points is not None:
            aux_list = []
            for n, key_point in enumerate(key_points[i]):  # y x
                aux = [int(key_point[0] * im_height), int(key_point[1] * im_width), key_points_score[i][n]]
                aux_list.append(aux)
            kpt.append(aux_list)

    det = np.array(det)

    return det, kpt


def draw_detections(image, detections, max_boxes_to_draw, violate=None, couple_points=None, draw_class_score=False):
    """
    Given an image and a dictionary of detections this function return the image with the drawings of the bounding boxes (with violations information if specified)

    Args:
        :img (numpy.ndarray): The image that is given as input to the object detection model
        :detections (dict): The dictionary with the detections information (detection_classes, detection_boxes, detection_scores,
            detection_keypoint_scores, detection_keypoints, detection_boxes_centroid)
        :max_boxes_to_draw (int): The maximum number of bounding boxes to draw
        :violate (set): The indexes of detections (sorted) that violate the minimum distance computed by my_utils.compute_distance function
            (default is None)
        :couple_points (list): A list of tuples each one containing the couple of indexes that violate the minimum distance (used to draw lines in
            between to bounding boxes)
            (default is None)
        :draw_class_score (bool): If this value is set to True, in the returned image will be drawn the category and the score over each bounding box
            (default is False)

    Returns:
        :img_with_drawings (numpy.ndarray): The image with the bounding boxes of each detected objects and optionally with the situations of violation
    """

    im_width, im_height = image.shape[1], image.shape[0]
    img_with_drawings = image.copy()
    classes = detections['detection_classes']
    boxes = detections['detection_boxes']
    scores = detections['detection_scores']
    centroids = detections['detection_boxes_centroid']
    red = (0, 0, 255)

    i = 0
    while i < max_boxes_to_draw and i < len(classes):
        [y_min, x_min, y_max, x_max] = boxes[i]
        (x_min_rescaled, x_max_rescaled, y_min_rescaled, y_max_rescaled) = (x_min * im_width, x_max * im_width, y_min * im_height, y_max * im_height)
        start_point, end_point = (int(x_max_rescaled), int(y_max_rescaled)), (int(x_min_rescaled), int(y_min_rescaled))

        # [cx, cy] = centroids[i]
        # (cx_rescaled, cy_rescaled) = (int(cx * im_width), int(cy * im_height))

        color = rgb_colors[classes[i]]
        if violate:
            if i in violate:
                color = red

        cv2.rectangle(img_with_drawings, start_point, end_point, color, 2)
        # cv2.circle(img_with_drawings, (cx_rescaled, cy_rescaled), 2, color, 2)

        if draw_class_score:
            cv2.rectangle(img_with_drawings, end_point, (start_point[0], end_point[1] - 25), rgb_colors[classes[i]], -1)
            text = face_category_index[classes[i]]['name'] + " {:.2f}".format(scores[i])
            cv2.putText(img_with_drawings, text, end_point, cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 0), 2, cv2.LINE_AA)
        i += 1

    if couple_points and len(centroids) > 1:
        for j in range(len(couple_points)):
            pt1 = centroids[couple_points[j][0]][0], centroids[couple_points[j][0]][1]
            pt2 = centroids[couple_points[j][1]][0], centroids[couple_points[j][1]][1]
            cv2.line(img_with_drawings, pt1, pt2, red, 2)

    text_location = (int(image.shape[1]-image.shape[1]/4), int(image.shape[0]/17))
    font_scale = 0.8 * 1 / (640/image.shape[0])
    thickness = int(2 * (image.shape[0]/640))
    cv2.putText(img_with_drawings, "# of people : "+str(i), text_location, cv2.FONT_HERSHEY_SIMPLEX, font_scale, red, thickness, cv2.LINE_AA)

    return img_with_drawings


def resize_preserving_ar(image, new_shape):
    """
    Resize and pad the input image in order to make it usable by an object detection model (e.g. mobilenet 640x640)

    Args:
        :image (numpy.ndarray): The image that will be resized and padded
        :new_shape (tuple): The shape of the image output (height, width)

    Returns:
        :res_image (numpy.ndarray): The image modified to have the new shape
    """
    (old_height, old_width, _) = image.shape
    (new_height, new_width) = new_shape

    if old_height != old_width:  # rectangle
        ratio_h, ratio_w = new_height / old_height, new_width / old_width

        if ratio_h > ratio_w:
            dim = (new_width, int(old_height * ratio_w))
            img = cv2.resize(image, dim, interpolation=cv2.INTER_CUBIC)
            bottom_padding = int(new_height - int(old_height * ratio_w)) if int(new_height - int(old_height * ratio_w)) >= 0 else 0
            img = cv2.copyMakeBorder(img, 0, bottom_padding, 0, 0, cv2.BORDER_CONSTANT)
            pad = (0, bottom_padding, dim)

        else:
            dim = (int(old_width * ratio_h), new_height)
            img = cv2.resize(image, dim, interpolation=cv2.INTER_CUBIC)
            right_padding = int(new_width - int(old_width * ratio_h)) if int(new_width - int(old_width * ratio_h)) >= 0 else 0
            img = cv2.copyMakeBorder(img, 0, 0, 0, right_padding, cv2.BORDER_CONSTANT)
            pad = (right_padding, 0, dim)

    else:  # square
        img = cv2.resize(image, new_shape, new_height, new_width)
        pad = (0, 0, (new_height, new_width))

    return img, pad


def resize_and_padding_preserving_ar(image, new_shape):
    """ Resize and pad the input image in order to make it usable by a pose model (e.g. mobilenet-posenet takes as input 257x257 images)

    Args:
        :image (numpy.ndarray): The image that will be resized and padded
        :new_shape (tuple): The shape of the image output

    Returns:
        :res_image (numpy.ndarray): The image modified to have the new shape
    """

    (old_height, old_width, _) = image.shape
    (new_height, new_width) = new_shape

    if old_height != old_width:  # rectangle
        ratio_h, ratio_w = new_height / old_height, new_width / old_width

        # print(img.shape, "\nRATIO: ", ratio_h, ratio_w)
        if ratio_h < ratio_w:
            ratio = new_shape[0] / old_height
            dim = (int(old_width * ratio), new_width)
            img = cv2.resize(image, dim)
            right_padding = int(new_width - img.shape[1]) if int(new_width - img.shape[1]) >= 0 else 0
            img = cv2.copyMakeBorder(img, 0, 0, 0, right_padding, cv2.BORDER_CONSTANT)
        else:
            ratio = new_shape[1] / old_width
            dim = (new_height, int(old_height * ratio))
            img = cv2.resize(image, dim)
            bottom_padding = int(new_height - img.shape[0]) if int(new_width - img.shape[0]) >= 0 else 0
            img = cv2.copyMakeBorder(img, 0, bottom_padding, 0, 0, cv2.BORDER_CONSTANT)

    else:  # square
        img = cv2.resize(image, new_shape)

    img = img.astype(np.float32) / 255.
    res_image = np.expand_dims(img, 0)

    return res_image


def draw_axis(yaw, pitch, roll, image=None, tdx=None, tdy=None, size=50):
    """
    Draw yaw pitch and roll axis on the image if passed as input and returns the vector containing the projection of the vector on the image plane

    Args:
        :yaw (float): value that represents the yaw rotation of the face
        :pitch (float): value that represents the pitch rotation of the face
        :roll (float): value that represents the roll rotation of the face
        :image (numpy.ndarray): The image where the three vector will be printed
            (default is None)
        :tdx (float64): x coordinate from where the vector drawing start expressed in pixel coordinates
            (default is None)
        :tdy (float64): y coordinate from where the vector drawing start expressed in pixel coordinates
            (default is None)
        :size (int): value that will be multiplied to each x, y and z value that enlarge the "vector drawing"
            (default is 50)

    Returns:
        :list_projection_xy (list): list containing the unit vector [x, y, z]
    """

    pitch = pitch * np.pi / 180
    yaw = -(yaw * np.pi / 180)
    roll = roll * np.pi / 180

    if tdx != None and tdy != None:
        tdx = tdx
        tdy = tdy

    else:
        height, width = image.shape[:2]
        tdx = width / 2
        tdy = height / 2

    # PROJECT 3D TO 2D XY plane (Z = 0)

    # X-Axis pointing to right. drawn in red
    x1 = size * (cos(yaw) * cos(roll)) + tdx
    y1 = size * (cos(pitch) * sin(roll) + cos(roll) * sin(pitch) * sin(yaw)) + tdy

    # Y-Axis | drawn in green
    x2 = size * (-cos(yaw) * sin(roll)) + tdx
    y2 = size * (cos(pitch) * cos(roll) - sin(pitch) * sin(yaw) * sin(roll)) + tdy

    # Z-Axis (out of the screen) drawn in yellow #it was blue
    x3 = size * (sin(yaw)) + tdx
    y3 = size * (-cos(yaw) * sin(pitch)) + tdy
    z3 = size * (cos(pitch) * cos(yaw)) + tdy

    if image is not None:
        cv2.line(image, (int(tdx), int(tdy)), (int(x1), int(y1)), (0, 0, 255), 2) # BGR->red
        cv2.line(image, (int(tdx), int(tdy)), (int(x2), int(y2)), (0, 255, 0), 2) # BGR->green
        cv2.line(image, (int(tdx), int(tdy)), (int(x3), int(y3)), (0, 255, 255), 2) # BGR->blue

    list_projection_xy = [sin(yaw), -cos(yaw) * sin(pitch)]
    return list_projection_xy


def visualize_vector(image, center, unit_vector, title="", color=(0, 0, 255)):
    """
    Draw the projected vector on the image plane and return the image

    Args:
        :image (numpy.ndarray): The image where the vector will be printed
        :center (list): x, y coordinates in pixels of the starting point from where the vector is drawn
        :unit_vector (list): vector of the gaze in the form [gx, gy]
        :title (string): title displayed in the imshow function
            (default is "")
        :color (tuple): color value of the vector drawn on the image
            (default is (0, 0, 255))

    Returns:
        :result (numpy.ndarray): The image with the vectors drawn
    """
    unit_vector_draw = [unit_vector[0] * image.shape[0]*0.15, unit_vector[1] * image.shape[0]*0.15]
    point = [center[0] + unit_vector_draw[0], center[1] + unit_vector_draw[1]]

    result = cv2.arrowedLine(image, (int(center[0]), int(center[1])), (int(point[0]), int(point[1])), color, thickness=4, tipLength=0.3)

    return result


def draw_key_points_pose(image, kpt, openpose=False):
    """
    Draw the key points and the lines connecting them; it expects the output of CenterNet (not OpenPose format)

    Args:
        :image (numpy.ndarray): The image where the lines connecting the key points will be printed
        :kpt (list): list of lists of points detected for each person [[x1, y1, c1], [x2, y2, c2],...] where x and y represent the coordinates of each
            point while c represents the confidence

    Returns:
        :img (numpy.ndarray): The image with the drawings of lines and key points
    """

    parts = body_parts_openpose if openpose else body_parts
    kpt_score = None
    threshold = 0.4

    overlay = image.copy()

    face_pts = face_points_openpose if openpose else face_points

    for j in range(len(kpt)):
        # 0 nose, 1/2 left/right eye, 3/4 left/right ear
        color = color_pose["blue"]
        if j == face_pts[0]:
            color = color_pose["purple"]# naso
        if j == face_pts[1]:
            color = color_pose["green"]#["light_pink"]#Leye
        if j == face_pts[2]:
            color = color_pose["dark_pink"]#Reye
        if j == face_pts[3]:
            color = color_pose["light_orange"]#LEar
        if j == face_pts[4]:
            color = color_pose["yellow"]# REar
        if openpose:
            cv2.circle(image, (int(kpt[j][0]), int(kpt[j][1])), 1, color, 2)
        else:
            cv2.circle(image, (int(kpt[j][1]), int(kpt[j][0])), 1, color, 2)
        # cv2.putText(img, pose_id_part[i], (int(kpts[j][i, 1] * img.shape[1]), int(kpts[j][i, 0] * img.shape[0])), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 1, cv2.LINE_AA)

    for part in parts:
        if int(kpt[part[0]][1]) != 0 and int(kpt[part[0]][0]) != 0 and int(kpt[part[1]][1]) != 0 and int(
                kpt[part[1]][0]) != 0:

            if openpose:
                cv2.line(overlay, (int(kpt[part[0]][0]), int(kpt[part[0]][1])), (int(kpt[part[1]][0]), int(kpt[part[1]][1])), (255, 255, 255), 2)
            else:
                cv2.line(overlay, (int(kpt[part[0]][1]), int(kpt[part[0]][0])),
                         (int(kpt[part[1]][1]), int(kpt[part[1]][0])), (255, 255, 255), 2)

    alpha = 0.4
    image = cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0)

    return image

def draw_key_points_pose_zedcam(image, kpt, openpose=True):
    """
    Draw the key points and the lines connecting them; it expects the output of CenterNet (not OpenPose format)

    Args:
        :image (numpy.ndarray): The image where the lines connecting the key points will be printed
        :kpt (list): list of lists of points detected for each person [[x1, y1, c1], [x2, y2, c2],...] where x and y represent the coordinates of each
            point while c represents the confidence

    Returns:
        :img (numpy.ndarray): The image with the drawings of lines and key points
    """

    parts = body_parts_zedcam
    kpt_score = None
    threshold = 0.4

    overlay = image.copy()

    face_pts = face_points_zedcam

    for j in range(len(kpt)):
        # 0 nose, 1/2 left/right eye, 3/4 left/right ear
        color = color_pose["blue"]
        if j == face_pts[0]:  # naso
            color = color_pose["purple"]
        if j == face_pts[1]:
            color = color_pose["light_pink"]
        if j == face_pts[2]:
            color = color_pose["dark_pink"]
        if j == face_pts[3]:
            color = color_pose["light_orange"]
        if j == face_pts[4]:
            color = color_pose["dark_orange"]
        if openpose:
            cv2.circle(image, (int(kpt[j][0]), int(kpt[j][1])), 1, color, 2)
        else:
            cv2.circle(image, (int(kpt[j][1]), int(kpt[j][0])), 1, color, 2)
        # cv2.putText(img, pose_id_part[i], (int(kpts[j][i, 1] * img.shape[1]), int(kpts[j][i, 0] * img.shape[0])), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 1, cv2.LINE_AA)

    for part in parts:
        if int(kpt[part[0]][1]) != 0 and int(kpt[part[0]][0]) != 0 and int(kpt[part[1]][1]) != 0 and int(
                kpt[part[1]][0]) != 0:

            if openpose:
                cv2.line(overlay, (int(kpt[part[0]][0]), int(kpt[part[0]][1])), (int(kpt[part[1]][0]), int(kpt[part[1]][1])), (255, 255, 255), 2)
            else:
                cv2.line(overlay, (int(kpt[part[0]][1]), int(kpt[part[0]][0])),
                         (int(kpt[part[1]][1]), int(kpt[part[1]][0])), (255, 255, 255), 2)

    alpha = 0.4
    image = cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0)

    return image

def plot_3d_points(list_points):
    """
    Plot points in 3D

    Args:
        :list_points: A list of lists representing the points; each point has (x, y, z) coordinates represented by the first, second and third element of each list

    Returns:
    """
    if list_points == []:
        return

    import matplotlib.pyplot as plt

    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    for point in list_points:
        ax.scatter(point[0], point[1], point[2], c=np.array(0), marker='o')

    ax.set_xlabel('x')
    ax.set_ylabel('y')
    ax.set_zlabel('z')

    plt.show()

    return


def draw_on_img(image, center, id_, res):
    """
    Draw arrow illustrating gaze direction on the image

    Args:
        :image (numpy.ndarray): The image where the vector will be printed
        :center (list): x, y coordinates in pixels of the starting point from where the vector is drawn
        :id_ (string): title displayed in the imshow function
            (default is "")
        :res (list): vector of the gaze in the form [gx, gy]

    Returns:
        :img_arrow (numpy.ndarray): The image with the vector drawn
    """

    res[0] *= image.shape[0]
    res[1] *= image.shape[1]

    norm1 = res / np.linalg.norm(res)
    norm_aux = [norm1[0], norm1[1]]  # normalized vectors

    norm1[0] *= image.shape[0]*0.15
    norm1[1] *= image.shape[0]*0.15

    point = center + norm1


    img_arrow = cv2.arrowedLine(image.copy(), (int(center[1]), int(center[0])), (int(point[1]), int(point[0])), (0, 0, 255), thickness=2, tipLength=0.2)

    return img_arrow, [norm_aux, center]


def confusion_matrix(conf_matrix, target_names=None, title="", cmap=None):
    """
    Create the image of the confusion matrix given a matrix as input

    Args:
        :conf_matrix (list): list of lists that represent an MxM matrix e.g. [[v11, v12, v13], [v21, v22, v23], [v31, v32, v33]]
        :target_names (list): list of target name of dimension M e.g. [[label1, label2, label3]]
            (default is None)
        :title (string): title string to be printed in the confusion matrix
            (default is "")
        :cmap (string): colormap that will be used by the confusion matrix
            (default is None)

    Returns:
        :gbr (numpy.ndarray): The image where the lines connecting the key points will be printed
    """
    from laeo_per_frame.interaction_per_frame_uncertainty import LAEO_computation
    import matplotlib.pyplot as plt

    if not conf_matrix:
        return []

    # if cmap is None:
    #     cmap = plt.get_cmap('Blues')

    plt.rcParams['xtick.bottom'] = plt.rcParams['xtick.labelbottom'] = False
    plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True

    fig, ax = plt.subplots(figsize=(6, 4))  # 2, 2, figsize=(6, 4))
    cax = ax.imshow(conf_matrix)

    for i in range(len(conf_matrix[0])):
        for j in range(len(conf_matrix[1])):
            ax.text(j, i, str(np.around(conf_matrix[i][j], 3)), va='center', ha='center', color="black")

    if target_names is not None:
        ax.set_xticks(np.arange(len(target_names)))
        ax.set_yticks(np.arange(len(target_names)))
        ax.set_xticklabels(target_names)
        ax.set_yticklabels(target_names)

    plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
    fig.tight_layout()
    fig.colorbar(cax)
    # plt.show()

    fig.canvas.draw()

    width, height = fig.get_size_inches() * fig.get_dpi()
    aux_img = np.fromstring(fig.canvas.tostring_rgb(), dtype='uint8').reshape(int(height), int(width), 3)
    gbr = aux_img[..., [2, 0, 1]].copy()

    # cv2.imshow("1312", gbr)
    # cv2.waitKey(0)

    return gbr


def join_images(image1, image2):
    """
    Join two images vertically into a new image with the height that is the maximum height of the two images passed as input and the width that is
    the sum of the widths of the two images passed as input

    Args:
        :image1 (numpy.ndarray): The image that will be in the left part of the joined images
        :image2 (numpy.ndarray): The image that will be in the right part of the joined images

    Returns:
        :joined_image (numpy.ndarray): The image that is the results of the merge of the two images passed as input
    """

    if type(image1) == list or type(image2) == list:
        return None

    image1_width, image1_height, image2_width, image2_height = image1.shape[1], image1.shape[0], image2.shape[1], image2.shape[0]

    new_shape_height = max(image1_height, image2_height)
    new_shape = (new_shape_height, image1_width + image2_width, 3)

    joined_image = np.zeros(new_shape, dtype=np.uint8)
    joined_image[:image1_height, :image1_width, :] = image1
    joined_image[:image2_height, image1_width:, :] = image2

    cv2.imshow("", cv2.resize(joined_image, (1200, 500)))
    cv2.waitKey(0)
    return joined_image


def draw_axis_from_json(img, json_file):
    if os.path.isfile(json_file):
        cv2.imshow("", img)
        cv2.waitKey(0)

        with open(json_file) as f:
            data = json.load(f)
            print(data)
            aux = data['people']
            for elem in aux:
                draw_axis(elem['yaw'][0], elem['pitch'][0], elem['roll'][0], img, elem['center_xy'][0], elem['center_xy'][1])
        cv2.imshow("", img)
        cv2.waitKey(0)

    return


def points_on_circumference(center=(0, 0), r=50, n=100):
    return [(center[0] + (cos(2 * pi / n * x) * r), center[1] + (sin(2 * pi / n * x) * r)) for x in range(0, n + 1)]


def draw_cones(yaw, pitch, roll, unc_yaw, unc_pitch, unc_roll, image=None, tdx=None, tdy=None, size=300):
    """
    Draw yaw pitch and roll axis on the image if passed as input and returns the vector containing the projection of the vector on the image plane

    Args:
        :yaw (float): value that represents the yaw rotation of the face
        :pitch (float): value that represents the pitch rotation of the face
        :roll (float): value that represents the roll rotation of the face
        :image (numpy.ndarray): The image where the three vector will be printed
            (default is None)
        :tdx (float64): x coordinate from where the vector drawing start expressed in pixel coordinates
            (default is None)
        :tdy (float64): y coordinate from where the vector drawing start expressed in pixel coordinates
            (default is None)
        :size (int): value that will be multiplied to each x, y and z value that enlarge the "vector drawing"
            (default is 50)

    Returns:
        :list_projection_xy (list): list containing the unit vector [x, y, z]
    """

    pitch = pitch * np.pi / 180
    yaw = -(yaw * np.pi / 180)
    roll = roll * np.pi / 180

    if tdx != None and tdy != None:
        tdx = tdx
        tdy = tdy

    else:
        height, width = image.shape[:2]
        tdx = width / 2
        tdy = height / 2

    # PROJECT 3D TO 2D XY plane (Z = 0)

    # X-Axis pointing to right. drawn in red
    x1 = size * (cos(yaw) * cos(roll)) + tdx
    y1 = size * (cos(pitch) * sin(roll) + cos(roll) * sin(pitch) * sin(yaw)) + tdy

    # Y-Axis | drawn in green
    x2 = size * (-cos(yaw) * sin(roll)) + tdx
    y2 = size * (cos(pitch) * cos(roll) - sin(pitch) * sin(yaw) * sin(roll)) + tdy

    # Z-Axis (out of the screen) drawn in blue
    x3 = size * (sin(yaw)) + tdx
    y3 = size * (-cos(yaw) * sin(pitch)) + tdy
    z3 = size * (cos(pitch) * cos(yaw)) + tdy

    unc_mean = (unc_yaw + unc_pitch + unc_roll) / 3

    radius = 12 * unc_mean

    overlay = image.copy()
    if image is not None:
        # cv2.line(image, (int(tdx), int(tdy)), (int(x1), int(y1)), (0, 0, 255), 2)
        # cv2.line(image, (int(tdx), int(tdy)), (int(x2), int(y2)), (0, 255, 0), 2)
        cv2.line(image, (int(tdx), int(tdy)), (int(x3), int(y3)), (255, 0, 0), 2)

        points = points_on_circumference((int(x3), int(y3)), radius, 400)

        for point in points:
            cv2.line(image, (int(tdx), int(tdy)), (int(point[0]), int(point[1])), (255, 0, 0), 2)

        # cv2.circle(image, (int(x3), int(y3)), int(radius), (255, 0, 0), 2)

    alpha = 0.5
    image = cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0)

    # cv2.imshow("cc", image)
    # cv2.waitKey(0)
    # exit()

    list_projection_xy = [sin(yaw), -cos(yaw) * sin(pitch)]
    return list_projection_xy, image

def draw_axis_3d(yaw, pitch, roll, image=None, tdx=None, tdy=None, size=50, yaw_uncertainty=-1, pitch_uncertainty=-1, roll_uncertainty=-1):
    """
    Draw yaw pitch and roll axis on the image if passed as input and returns the vector containing the projection of the vector on the image plane
    Args:
        :yaw (float): value that represents the yaw rotation of the face
        :pitch (float): value that represents the pitch rotation of the face
        :roll (float): value that represents the roll rotation of the face
        :image (numpy.ndarray): The image where the three vector will be printed
            (default is None)
        :tdx (float64): x coordinate from where the vector drawing start expressed in pixel coordinates
            (default is None)
        :tdy (float64): y coordinate from where the vector drawing start expressed in pixel coordinates
            (default is None)
        :size (int): value that will be multiplied to each x, y and z value that enlarge the "vector drawing"
            (default is 50)
    Returns:
        :list_projection_xy (list): list containing the unit vector [x, y, z]
    """
    pitch = pitch * np.pi / 180
    yaw = -(yaw * np.pi / 180)
    roll = roll * np.pi / 180
    # print(yaw, pitch, roll)
    if tdx != None and tdy != None:
        tdx = tdx
        tdy = tdy
    else:
        height, width = image.shape[:2]
        tdx = width / 2
        tdy = height / 2
    # PROJECT 3D TO 2D XY plane (Z = 0)
    # X-Axis pointing to right. drawn in red
    x1 = size * (cos(yaw) * cos(roll)) + tdx
    y1 = size * (cos(pitch) * sin(roll) + cos(roll) * sin(pitch) * sin(yaw)) + tdy
    # Y-Axis | drawn in green
    x2 = size * (-cos(yaw) * sin(roll)) + tdx
    y2 = size * (cos(pitch) * cos(roll) - sin(pitch) * sin(yaw) * sin(roll)) + tdy
    # Z-Axis (out of the screen) drawn in blue
    x3 = size * (sin(yaw)) + tdx
    y3 = size * (-cos(yaw) * sin(pitch)) + tdy
    z3 = size * (cos(pitch) * cos(yaw)) + tdy
    if image is not None:
        cv2.line(image, (int(tdx), int(tdy)), (int(x1), int(y1)), (0, 0, 255), 2)
        cv2.line(image, (int(tdx), int(tdy)), (int(x2), int(y2)), (0, 255, 0), 2)
        cv2.line(image, (int(tdx), int(tdy)), (int(x3), int(y3)), (255, 0, 0), 2)
    return image