Spaces:
Runtime error
Runtime error
File size: 28,589 Bytes
9d11120 20f7ff3 9d11120 20f7ff3 9d11120 20f7ff3 9d11120 20f7ff3 9d11120 20f7ff3 9d11120 20f7ff3 9d11120 20f7ff3 9d11120 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 |
import cv2
import os
import json
import numpy as np
from math import cos, sin, pi
from utils.labels import coco_category_index, rgb_colors, color_pose, color_pose_normalized, pose_id_part, face_category_index, body_parts_openpose, body_parts, face_points, face_points_openpose, pose_id_part_zedcam, face_points_zedcam, body_parts_zedcam
# from src.utils.my_utils import fit_plane_least_square # , retrieve_line_from_two_points
def percentage_to_pixel(shape, bb_boxes, bb_boxes_scores, key_points=None, key_points_score=None):
"""
Convert the detections from percentage to pixels coordinates; it works both for the bounding boxes and for the key points if passed
Args:
:img_shape (tuple): the shape of the image
:bb_boxes (numpy.ndarray): list of list each one representing the bounding box coordinates expressed in percentage [y_min_perc, x_min_perc, y_max_perc, x_max_perc]
:bb_boxes_scores (numpy.ndarray): list of score for each bounding box in range [0, 1]
:key_points (numpy.ndarray): list of list of list each one representing the key points coordinates expressed in percentage [y_perc, x_perc]
:key_points_score (numpy.ndarray): list of list each one representing the score associated to each key point in range [0, 1]
Returns:
:det (numpy.ndarray): list of lists each one representing the bounding box coordinates in pixels and the score associated to each bounding box [x_min, y_min, x_max, y_max, score]
:kpt (list): list of lists each one representing the key points detected in pixels and the score associated to each point [x, y, score]
"""
im_width, im_height = shape[1], shape[0]
det, kpt = [], []
if key_points is not None:
key_points = key_points
key_points_score = key_points_score
for i, _ in enumerate(bb_boxes):
y_min, x_min, y_max, x_max = bb_boxes[i]
x_min_rescaled, x_max_rescaled, y_min_rescaled, y_max_rescaled = x_min * im_width, x_max * im_width, y_min * im_height, y_max * im_height
det.append([int(x_min_rescaled), int(y_min_rescaled), int(x_max_rescaled), int(y_max_rescaled), bb_boxes_scores[i]])
if key_points is not None:
aux_list = []
for n, key_point in enumerate(key_points[i]): # y x
aux = [int(key_point[0] * im_height), int(key_point[1] * im_width), key_points_score[i][n]]
aux_list.append(aux)
kpt.append(aux_list)
det = np.array(det)
return det, kpt
def draw_detections(image, detections, max_boxes_to_draw, violate=None, couple_points=None, draw_class_score=False):
"""
Given an image and a dictionary of detections this function return the image with the drawings of the bounding boxes (with violations information if specified)
Args:
:img (numpy.ndarray): The image that is given as input to the object detection model
:detections (dict): The dictionary with the detections information (detection_classes, detection_boxes, detection_scores,
detection_keypoint_scores, detection_keypoints, detection_boxes_centroid)
:max_boxes_to_draw (int): The maximum number of bounding boxes to draw
:violate (set): The indexes of detections (sorted) that violate the minimum distance computed by my_utils.compute_distance function
(default is None)
:couple_points (list): A list of tuples each one containing the couple of indexes that violate the minimum distance (used to draw lines in
between to bounding boxes)
(default is None)
:draw_class_score (bool): If this value is set to True, in the returned image will be drawn the category and the score over each bounding box
(default is False)
Returns:
:img_with_drawings (numpy.ndarray): The image with the bounding boxes of each detected objects and optionally with the situations of violation
"""
im_width, im_height = image.shape[1], image.shape[0]
img_with_drawings = image.copy()
classes = detections['detection_classes']
boxes = detections['detection_boxes']
scores = detections['detection_scores']
centroids = detections['detection_boxes_centroid']
red = (0, 0, 255)
i = 0
while i < max_boxes_to_draw and i < len(classes):
[y_min, x_min, y_max, x_max] = boxes[i]
(x_min_rescaled, x_max_rescaled, y_min_rescaled, y_max_rescaled) = (x_min * im_width, x_max * im_width, y_min * im_height, y_max * im_height)
start_point, end_point = (int(x_max_rescaled), int(y_max_rescaled)), (int(x_min_rescaled), int(y_min_rescaled))
# [cx, cy] = centroids[i]
# (cx_rescaled, cy_rescaled) = (int(cx * im_width), int(cy * im_height))
color = rgb_colors[classes[i]]
if violate:
if i in violate:
color = red
cv2.rectangle(img_with_drawings, start_point, end_point, color, 2)
# cv2.circle(img_with_drawings, (cx_rescaled, cy_rescaled), 2, color, 2)
if draw_class_score:
cv2.rectangle(img_with_drawings, end_point, (start_point[0], end_point[1] - 25), rgb_colors[classes[i]], -1)
text = face_category_index[classes[i]]['name'] + " {:.2f}".format(scores[i])
cv2.putText(img_with_drawings, text, end_point, cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 0), 2, cv2.LINE_AA)
i += 1
if couple_points and len(centroids) > 1:
for j in range(len(couple_points)):
pt1 = centroids[couple_points[j][0]][0], centroids[couple_points[j][0]][1]
pt2 = centroids[couple_points[j][1]][0], centroids[couple_points[j][1]][1]
cv2.line(img_with_drawings, pt1, pt2, red, 2)
text_location = (int(image.shape[1]-image.shape[1]/4), int(image.shape[0]/17))
font_scale = 0.8 * 1 / (640/image.shape[0])
thickness = int(2 * (image.shape[0]/640))
cv2.putText(img_with_drawings, "# of people : "+str(i), text_location, cv2.FONT_HERSHEY_SIMPLEX, font_scale, red, thickness, cv2.LINE_AA)
return img_with_drawings
def resize_preserving_ar(image, new_shape):
"""
Resize and pad the input image in order to make it usable by an object detection model (e.g. mobilenet 640x640)
Args:
:image (numpy.ndarray): The image that will be resized and padded
:new_shape (tuple): The shape of the image output (height, width)
Returns:
:res_image (numpy.ndarray): The image modified to have the new shape
"""
(old_height, old_width, _) = image.shape
(new_height, new_width) = new_shape
if old_height != old_width: # rectangle
ratio_h, ratio_w = new_height / old_height, new_width / old_width
if ratio_h > ratio_w:
dim = (new_width, int(old_height * ratio_w))
img = cv2.resize(image, dim, interpolation=cv2.INTER_CUBIC)
bottom_padding = int(new_height - int(old_height * ratio_w)) if int(new_height - int(old_height * ratio_w)) >= 0 else 0
img = cv2.copyMakeBorder(img, 0, bottom_padding, 0, 0, cv2.BORDER_CONSTANT)
pad = (0, bottom_padding, dim)
else:
dim = (int(old_width * ratio_h), new_height)
img = cv2.resize(image, dim, interpolation=cv2.INTER_CUBIC)
right_padding = int(new_width - int(old_width * ratio_h)) if int(new_width - int(old_width * ratio_h)) >= 0 else 0
img = cv2.copyMakeBorder(img, 0, 0, 0, right_padding, cv2.BORDER_CONSTANT)
pad = (right_padding, 0, dim)
else: # square
img = cv2.resize(image, new_shape, new_height, new_width)
pad = (0, 0, (new_height, new_width))
return img, pad
def resize_and_padding_preserving_ar(image, new_shape):
""" Resize and pad the input image in order to make it usable by a pose model (e.g. mobilenet-posenet takes as input 257x257 images)
Args:
:image (numpy.ndarray): The image that will be resized and padded
:new_shape (tuple): The shape of the image output
Returns:
:res_image (numpy.ndarray): The image modified to have the new shape
"""
(old_height, old_width, _) = image.shape
(new_height, new_width) = new_shape
if old_height != old_width: # rectangle
ratio_h, ratio_w = new_height / old_height, new_width / old_width
# print(img.shape, "\nRATIO: ", ratio_h, ratio_w)
if ratio_h < ratio_w:
ratio = new_shape[0] / old_height
dim = (int(old_width * ratio), new_width)
img = cv2.resize(image, dim)
right_padding = int(new_width - img.shape[1]) if int(new_width - img.shape[1]) >= 0 else 0
img = cv2.copyMakeBorder(img, 0, 0, 0, right_padding, cv2.BORDER_CONSTANT)
else:
ratio = new_shape[1] / old_width
dim = (new_height, int(old_height * ratio))
img = cv2.resize(image, dim)
bottom_padding = int(new_height - img.shape[0]) if int(new_width - img.shape[0]) >= 0 else 0
img = cv2.copyMakeBorder(img, 0, bottom_padding, 0, 0, cv2.BORDER_CONSTANT)
else: # square
img = cv2.resize(image, new_shape)
img = img.astype(np.float32) / 255.
res_image = np.expand_dims(img, 0)
return res_image
def draw_axis(yaw, pitch, roll, image=None, tdx=None, tdy=None, size=50):
"""
Draw yaw pitch and roll axis on the image if passed as input and returns the vector containing the projection of the vector on the image plane
Args:
:yaw (float): value that represents the yaw rotation of the face
:pitch (float): value that represents the pitch rotation of the face
:roll (float): value that represents the roll rotation of the face
:image (numpy.ndarray): The image where the three vector will be printed
(default is None)
:tdx (float64): x coordinate from where the vector drawing start expressed in pixel coordinates
(default is None)
:tdy (float64): y coordinate from where the vector drawing start expressed in pixel coordinates
(default is None)
:size (int): value that will be multiplied to each x, y and z value that enlarge the "vector drawing"
(default is 50)
Returns:
:list_projection_xy (list): list containing the unit vector [x, y, z]
"""
pitch = pitch * np.pi / 180
yaw = -(yaw * np.pi / 180)
roll = roll * np.pi / 180
if tdx != None and tdy != None:
tdx = tdx
tdy = tdy
else:
height, width = image.shape[:2]
tdx = width / 2
tdy = height / 2
# PROJECT 3D TO 2D XY plane (Z = 0)
# X-Axis pointing to right. drawn in red
x1 = size * (cos(yaw) * cos(roll)) + tdx
y1 = size * (cos(pitch) * sin(roll) + cos(roll) * sin(pitch) * sin(yaw)) + tdy
# Y-Axis | drawn in green
x2 = size * (-cos(yaw) * sin(roll)) + tdx
y2 = size * (cos(pitch) * cos(roll) - sin(pitch) * sin(yaw) * sin(roll)) + tdy
# Z-Axis (out of the screen) drawn in yellow #it was blue
x3 = size * (sin(yaw)) + tdx
y3 = size * (-cos(yaw) * sin(pitch)) + tdy
z3 = size * (cos(pitch) * cos(yaw)) + tdy
if image is not None:
cv2.line(image, (int(tdx), int(tdy)), (int(x1), int(y1)), (0, 0, 255), 2) # BGR->red
cv2.line(image, (int(tdx), int(tdy)), (int(x2), int(y2)), (0, 255, 0), 2) # BGR->green
cv2.line(image, (int(tdx), int(tdy)), (int(x3), int(y3)), (0, 255, 255), 2) # BGR->blue
list_projection_xy = [sin(yaw), -cos(yaw) * sin(pitch)]
return list_projection_xy
def visualize_vector(image, center, unit_vector, title="", color=(0, 0, 255)):
"""
Draw the projected vector on the image plane and return the image
Args:
:image (numpy.ndarray): The image where the vector will be printed
:center (list): x, y coordinates in pixels of the starting point from where the vector is drawn
:unit_vector (list): vector of the gaze in the form [gx, gy]
:title (string): title displayed in the imshow function
(default is "")
:color (tuple): color value of the vector drawn on the image
(default is (0, 0, 255))
Returns:
:result (numpy.ndarray): The image with the vectors drawn
"""
thickness = image.shape[0] // 100
if thickness == 0 or thickness == 1:
thickness = 1
# if image.shape[0] > 150 or image.shape[1] > 150:
#
# else:
# thickness = 1
unit_vector_draw = [unit_vector[0] * image.shape[0]*0.15, unit_vector[1] * image.shape[0]*0.15]
point = [center[0] + unit_vector_draw[0], center[1] + unit_vector_draw[1]]
result = cv2.arrowedLine(image, (int(center[0]), int(center[1])), (int(point[0]), int(point[1])), color, thickness=thickness, tipLength=0.3)
return result
def draw_key_points_pose(image, kpt, openpose=False, only_face=False):
"""
Draw the key points and the lines connecting them; it expects the output of CenterNet (not OpenPose format)
Args:
:image (numpy.ndarray): The image where the lines connecting the key points will be printed
:kpt (list): list of lists of points detected for each person [[x1, y1, c1], [x2, y2, c2],...] where x and y represent the coordinates of each
point while c represents the confidence
Returns:
:img (numpy.ndarray): The image with the drawings of lines and key points
"""
thickness = max (image.shape[0] // 100, image.shape[1] // 100)
if thickness == 0:
thickness = 1
if thickness == 1:
thickness = -1
parts = body_parts_openpose if openpose else body_parts
kpt_score = None
threshold = 0.4
overlay = image.copy()
face_pts = face_points_openpose if openpose else face_points
for j in range(len(kpt)):
# 0 nose, 1/2 left/right eye, 3/4 left/right ear
color = color_pose["blue"]
if j == face_pts[0]:
color = color_pose["purple"]# naso
if j == face_pts[1]:
color = color_pose["green"]#["light_pink"]#Leye
if j == face_pts[2]:
color = color_pose["dark_pink"]#Reye
if j == face_pts[3]:
color = color_pose["light_orange"]#LEar
if j == face_pts[4]:
color = color_pose["yellow"]# REar
if only_face and j in face_pts:
if openpose:
cv2.circle(image, (int(kpt[j][0]), int(kpt[j][1])), 1, color, thickness=thickness)
else:
cv2.circle(image, (int(kpt[j][1]), int(kpt[j][0])), 1, color, thickness=thickness)
elif not only_face:
if openpose:
cv2.circle(image, (int(kpt[j][0]), int(kpt[j][1])), 1, color, thickness=thickness)
else:
cv2.circle(image, (int(kpt[j][1]), int(kpt[j][0])), 1, color, thickness=thickness)
# cv2.putText(img, pose_id_part[i], (int(kpts[j][i, 1] * img.shape[1]), int(kpts[j][i, 0] * img.shape[0])), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 1, cv2.LINE_AA)
if not only_face:
for part in parts:
if int(kpt[part[0]][1]) != 0 and int(kpt[part[0]][0]) != 0 and int(kpt[part[1]][1]) != 0 and int(
kpt[part[1]][0]) != 0:
if openpose:
cv2.line(overlay, (int(kpt[part[0]][0]), int(kpt[part[0]][1])), (int(kpt[part[1]][0]), int(kpt[part[1]][1])), (255, 255, 255), 2)
else:
cv2.line(overlay, (int(kpt[part[0]][1]), int(kpt[part[0]][0])),
(int(kpt[part[1]][1]), int(kpt[part[1]][0])), (255, 255, 255), 2)
alpha = 0.4
image = cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0)
return image
def draw_key_points_pose_zedcam(image, kpt, openpose=True):
"""
Draw the key points and the lines connecting them; it expects the output of CenterNet (not OpenPose format)
Args:
:image (numpy.ndarray): The image where the lines connecting the key points will be printed
:kpt (list): list of lists of points detected for each person [[x1, y1, c1], [x2, y2, c2],...] where x and y represent the coordinates of each
point while c represents the confidence
Returns:
:img (numpy.ndarray): The image with the drawings of lines and key points
"""
parts = body_parts_zedcam
kpt_score = None
threshold = 0.4
overlay = image.copy()
face_pts = face_points_zedcam
for j in range(len(kpt)):
# 0 nose, 1/2 left/right eye, 3/4 left/right ear
color = color_pose["blue"]
if j == face_pts[0]: # naso
color = color_pose["purple"]
if j == face_pts[1]:
color = color_pose["light_pink"]
if j == face_pts[2]:
color = color_pose["dark_pink"]
if j == face_pts[3]:
color = color_pose["light_orange"]
if j == face_pts[4]:
color = color_pose["dark_orange"]
if openpose:
cv2.circle(image, (int(kpt[j][0]), int(kpt[j][1])), 1, color, 2)
else:
cv2.circle(image, (int(kpt[j][1]), int(kpt[j][0])), 1, color, 2)
# cv2.putText(img, pose_id_part[i], (int(kpts[j][i, 1] * img.shape[1]), int(kpts[j][i, 0] * img.shape[0])), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 1, cv2.LINE_AA)
for part in parts:
if int(kpt[part[0]][1]) != 0 and int(kpt[part[0]][0]) != 0 and int(kpt[part[1]][1]) != 0 and int(
kpt[part[1]][0]) != 0:
if openpose:
cv2.line(overlay, (int(kpt[part[0]][0]), int(kpt[part[0]][1])), (int(kpt[part[1]][0]), int(kpt[part[1]][1])), (255, 255, 255), 2)
else:
cv2.line(overlay, (int(kpt[part[0]][1]), int(kpt[part[0]][0])),
(int(kpt[part[1]][1]), int(kpt[part[1]][0])), (255, 255, 255), 2)
alpha = 0.4
image = cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0)
return image
def plot_3d_points(list_points):
"""
Plot points in 3D
Args:
:list_points: A list of lists representing the points; each point has (x, y, z) coordinates represented by the first, second and third element of each list
Returns:
"""
if list_points == []:
return
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
for point in list_points:
ax.scatter(point[0], point[1], point[2], c=np.array(0), marker='o')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
plt.show()
return
def draw_on_img(image, center, id_, res):
"""
Draw arrow illustrating gaze direction on the image
Args:
:image (numpy.ndarray): The image where the vector will be printed
:center (list): x, y coordinates in pixels of the starting point from where the vector is drawn
:id_ (string): title displayed in the imshow function
(default is "")
:res (list): vector of the gaze in the form [gx, gy]
Returns:
:img_arrow (numpy.ndarray): The image with the vector drawn
"""
res[0] *= image.shape[0]
res[1] *= image.shape[1]
norm1 = res / np.linalg.norm(res)
norm_aux = [norm1[0], norm1[1]] # normalized vectors
norm1[0] *= image.shape[0]*0.15
norm1[1] *= image.shape[0]*0.15
point = center + norm1
img_arrow = cv2.arrowedLine(image.copy(), (int(center[1]), int(center[0])), (int(point[1]), int(point[0])), (0, 0, 255), thickness=2, tipLength=0.2)
return img_arrow, [norm_aux, center]
def confusion_matrix(conf_matrix, target_names=None, title="", cmap=None):
"""
Create the image of the confusion matrix given a matrix as input
Args:
:conf_matrix (list): list of lists that represent an MxM matrix e.g. [[v11, v12, v13], [v21, v22, v23], [v31, v32, v33]]
:target_names (list): list of target name of dimension M e.g. [[label1, label2, label3]]
(default is None)
:title (string): title string to be printed in the confusion matrix
(default is "")
:cmap (string): colormap that will be used by the confusion matrix
(default is None)
Returns:
:gbr (numpy.ndarray): The image where the lines connecting the key points will be printed
"""
from laeo_per_frame.interaction_per_frame_uncertainty import LAEO_computation
import matplotlib.pyplot as plt
if not conf_matrix:
return []
# if cmap is None:
# cmap = plt.get_cmap('Blues')
plt.rcParams['xtick.bottom'] = plt.rcParams['xtick.labelbottom'] = False
plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True
fig, ax = plt.subplots(figsize=(6, 4)) # 2, 2, figsize=(6, 4))
cax = ax.imshow(conf_matrix)
for i in range(len(conf_matrix[0])):
for j in range(len(conf_matrix[1])):
ax.text(j, i, str(np.around(conf_matrix[i][j], 3)), va='center', ha='center', color="black")
if target_names is not None:
ax.set_xticks(np.arange(len(target_names)))
ax.set_yticks(np.arange(len(target_names)))
ax.set_xticklabels(target_names)
ax.set_yticklabels(target_names)
plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
fig.tight_layout()
fig.colorbar(cax)
# plt.show()
fig.canvas.draw()
width, height = fig.get_size_inches() * fig.get_dpi()
aux_img = np.fromstring(fig.canvas.tostring_rgb(), dtype='uint8').reshape(int(height), int(width), 3)
gbr = aux_img[..., [2, 0, 1]].copy()
# cv2.imshow("1312", gbr)
# cv2.waitKey(0)
return gbr
def join_images(image1, image2):
"""
Join two images vertically into a new image with the height that is the maximum height of the two images passed as input and the width that is
the sum of the widths of the two images passed as input
Args:
:image1 (numpy.ndarray): The image that will be in the left part of the joined images
:image2 (numpy.ndarray): The image that will be in the right part of the joined images
Returns:
:joined_image (numpy.ndarray): The image that is the results of the merge of the two images passed as input
"""
if type(image1) == list or type(image2) == list:
return None
image1_width, image1_height, image2_width, image2_height = image1.shape[1], image1.shape[0], image2.shape[1], image2.shape[0]
new_shape_height = max(image1_height, image2_height)
new_shape = (new_shape_height, image1_width + image2_width, 3)
joined_image = np.zeros(new_shape, dtype=np.uint8)
joined_image[:image1_height, :image1_width, :] = image1
joined_image[:image2_height, image1_width:, :] = image2
cv2.imshow("", cv2.resize(joined_image, (1200, 500)))
cv2.waitKey(0)
return joined_image
def draw_axis_from_json(img, json_file):
if os.path.isfile(json_file):
cv2.imshow("", img)
cv2.waitKey(0)
with open(json_file) as f:
data = json.load(f)
print(data)
aux = data['people']
for elem in aux:
draw_axis(elem['yaw'][0], elem['pitch'][0], elem['roll'][0], img, elem['center_xy'][0], elem['center_xy'][1])
cv2.imshow("", img)
cv2.waitKey(0)
return
def points_on_circumference(center=(0, 0), r=50, n=100):
return [(center[0] + (cos(2 * pi / n * x) * r), center[1] + (sin(2 * pi / n * x) * r)) for x in range(0, n + 1)]
def draw_cones(yaw, pitch, roll, unc_yaw, unc_pitch, unc_roll, image=None, tdx=None, tdy=None, size=300):
"""
Draw yaw pitch and roll axis on the image if passed as input and returns the vector containing the projection of the vector on the image plane
Args:
:yaw (float): value that represents the yaw rotation of the face
:pitch (float): value that represents the pitch rotation of the face
:roll (float): value that represents the roll rotation of the face
:image (numpy.ndarray): The image where the three vector will be printed
(default is None)
:tdx (float64): x coordinate from where the vector drawing start expressed in pixel coordinates
(default is None)
:tdy (float64): y coordinate from where the vector drawing start expressed in pixel coordinates
(default is None)
:size (int): value that will be multiplied to each x, y and z value that enlarge the "vector drawing"
(default is 50)
Returns:
:list_projection_xy (list): list containing the unit vector [x, y, z]
"""
pitch = pitch * np.pi / 180
yaw = -(yaw * np.pi / 180)
roll = roll * np.pi / 180
if tdx != None and tdy != None:
tdx = tdx
tdy = tdy
else:
height, width = image.shape[:2]
tdx = width / 2
tdy = height / 2
# PROJECT 3D TO 2D XY plane (Z = 0)
# X-Axis pointing to right. drawn in red
x1 = size * (cos(yaw) * cos(roll)) + tdx
y1 = size * (cos(pitch) * sin(roll) + cos(roll) * sin(pitch) * sin(yaw)) + tdy
# Y-Axis | drawn in green
x2 = size * (-cos(yaw) * sin(roll)) + tdx
y2 = size * (cos(pitch) * cos(roll) - sin(pitch) * sin(yaw) * sin(roll)) + tdy
# Z-Axis (out of the screen) drawn in blue
x3 = size * (sin(yaw)) + tdx
y3 = size * (-cos(yaw) * sin(pitch)) + tdy
z3 = size * (cos(pitch) * cos(yaw)) + tdy
unc_mean = (unc_yaw + unc_pitch + unc_roll) / 3
radius = 12 * unc_mean
overlay = image.copy()
if image is not None:
# cv2.line(image, (int(tdx), int(tdy)), (int(x1), int(y1)), (0, 0, 255), 2)
# cv2.line(image, (int(tdx), int(tdy)), (int(x2), int(y2)), (0, 255, 0), 2)
cv2.line(image, (int(tdx), int(tdy)), (int(x3), int(y3)), (255, 0, 0), 2)
points = points_on_circumference((int(x3), int(y3)), radius, 400)
for point in points:
cv2.line(image, (int(tdx), int(tdy)), (int(point[0]), int(point[1])), (255, 0, 0), 2)
# cv2.circle(image, (int(x3), int(y3)), int(radius), (255, 0, 0), 2)
alpha = 0.5
image = cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0)
# cv2.imshow("cc", image)
# cv2.waitKey(0)
# exit()
list_projection_xy = [sin(yaw), -cos(yaw) * sin(pitch)]
return list_projection_xy, image
def draw_axis_3d(yaw, pitch, roll, image=None, tdx=None, tdy=None, size=50, yaw_uncertainty=-1, pitch_uncertainty=-1, roll_uncertainty=-1):
"""
Draw yaw pitch and roll axis on the image if passed as input and returns the vector containing the projection of the vector on the image plane
Args:
:yaw (float): value that represents the yaw rotation of the face
:pitch (float): value that represents the pitch rotation of the face
:roll (float): value that represents the roll rotation of the face
:image (numpy.ndarray): The image where the three vector will be printed
(default is None)
:tdx (float64): x coordinate from where the vector drawing start expressed in pixel coordinates
(default is None)
:tdy (float64): y coordinate from where the vector drawing start expressed in pixel coordinates
(default is None)
:size (int): value that will be multiplied to each x, y and z value that enlarge the "vector drawing"
(default is 50)
Returns:
:list_projection_xy (list): list containing the unit vector [x, y, z]
"""
pitch = pitch * np.pi / 180
yaw = -(yaw * np.pi / 180)
roll = roll * np.pi / 180
# print(yaw, pitch, roll)
if tdx != None and tdy != None:
tdx = tdx
tdy = tdy
else:
height, width = image.shape[:2]
tdx = width / 2
tdy = height / 2
# PROJECT 3D TO 2D XY plane (Z = 0)
# X-Axis pointing to right. drawn in red
x1 = size * (cos(yaw) * cos(roll)) + tdx
y1 = size * (cos(pitch) * sin(roll) + cos(roll) * sin(pitch) * sin(yaw)) + tdy
# Y-Axis | drawn in green
x2 = size * (-cos(yaw) * sin(roll)) + tdx
y2 = size * (cos(pitch) * cos(roll) - sin(pitch) * sin(yaw) * sin(roll)) + tdy
# Z-Axis (out of the screen) drawn in blue
x3 = size * (sin(yaw)) + tdx
y3 = size * (-cos(yaw) * sin(pitch)) + tdy
z3 = size * (cos(pitch) * cos(yaw)) + tdy
if image is not None:
cv2.line(image, (int(tdx), int(tdy)), (int(x1), int(y1)), (0, 0, 255), 2)
cv2.line(image, (int(tdx), int(tdy)), (int(x2), int(y2)), (0, 255, 0), 2)
cv2.line(image, (int(tdx), int(tdy)), (int(x3), int(y3)), (255, 0, 0), 2)
return image |