Spaces:
Sleeping
Sleeping
FantasticGNU
commited on
Commit
•
96a4737
1
Parent(s):
f2de29b
Update model/openllama.py
Browse files- model/openllama.py +9 -9
model/openllama.py
CHANGED
@@ -172,16 +172,16 @@ class OpenLLAMAPEFTModel(nn.Module):
|
|
172 |
print (f'Initializing visual encoder from {imagebind_ckpt_path} ...')
|
173 |
|
174 |
self.visual_encoder, self.visual_hidden_size = imagebind_model.imagebind_huge(args)
|
175 |
-
self.visual_encoder.to(torch.
|
176 |
imagebind_ckpt = torch.load(imagebind_ckpt_path, map_location=torch.device('cpu'))
|
177 |
self.visual_encoder.load_state_dict(imagebind_ckpt, strict=True)
|
178 |
|
179 |
|
180 |
self.iter = 0
|
181 |
|
182 |
-
self.image_decoder = LinearLayer(1280, 1024, 4).to(torch.
|
183 |
|
184 |
-
self.prompt_learner = PromptLearner(1, 4096).to(torch.
|
185 |
|
186 |
self.loss_focal = FocalLoss()
|
187 |
self.loss_dice = BinaryDiceLoss()
|
@@ -215,7 +215,7 @@ class OpenLLAMAPEFTModel(nn.Module):
|
|
215 |
# # self.llama_model = load_checkpoint_and_dispatch(self.llama_model, vicuna_ckpt_path, device_map=device_map, offload_folder="offload", offload_state_dict = True)
|
216 |
# # self.llama_model.to(torch.float16)
|
217 |
# # try:
|
218 |
-
self.llama_model = AutoModelForCausalLM.from_pretrained(vicuna_ckpt_path, torch_dtype=torch.
|
219 |
# # except:
|
220 |
# pass
|
221 |
# finally:
|
@@ -225,7 +225,7 @@ class OpenLLAMAPEFTModel(nn.Module):
|
|
225 |
self.llama_model.load_state_dict(delta_ckpt, strict=False)
|
226 |
self.llama_model.print_trainable_parameters()
|
227 |
|
228 |
-
self.llama_tokenizer = LlamaTokenizer.from_pretrained(vicuna_ckpt_path, use_fast=False, torch_dtype=torch.
|
229 |
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
|
230 |
self.llama_tokenizer.padding_side = "right"
|
231 |
print ('Language decoder initialized.')
|
@@ -634,10 +634,10 @@ class OpenLLAMAPEFTModel(nn.Module):
|
|
634 |
anomaly_map = (100.0 * patch_tokens[layer] @ feats_text_tensor.transpose(-2,-1))
|
635 |
B, L, C = anomaly_map.shape
|
636 |
H = int(np.sqrt(L))
|
637 |
-
anomaly_map = anomaly_map.to(torch.float16)
|
638 |
anomaly_map = F.interpolate(anomaly_map.permute(0, 2, 1).view(B, 2, H, H),
|
639 |
size=224, mode='bilinear', align_corners=True)
|
640 |
-
anomaly_map = anomaly_map.to(torch.bfloat16)
|
641 |
anomaly_map = torch.softmax(anomaly_map, dim=1)
|
642 |
anomaly_maps.append(anomaly_map[:,1,:,:])
|
643 |
|
@@ -661,9 +661,9 @@ class OpenLLAMAPEFTModel(nn.Module):
|
|
661 |
sims.append(sim_max)
|
662 |
|
663 |
sim = torch.mean(torch.stack(sims,dim=0), dim=0).reshape(1,1,16,16)
|
664 |
-
anomaly_map = anomaly_map.to(torch.float16)
|
665 |
sim = F.interpolate(sim,size=224, mode='bilinear', align_corners=True)
|
666 |
-
anomaly_map = anomaly_map.to(torch.bfloat16)
|
667 |
anomaly_map_ret = 1 - sim # (anomaly_map_ret + 1 - sim) / 2
|
668 |
|
669 |
|
|
|
172 |
print (f'Initializing visual encoder from {imagebind_ckpt_path} ...')
|
173 |
|
174 |
self.visual_encoder, self.visual_hidden_size = imagebind_model.imagebind_huge(args)
|
175 |
+
self.visual_encoder.to(torch.float16).to(self.device)
|
176 |
imagebind_ckpt = torch.load(imagebind_ckpt_path, map_location=torch.device('cpu'))
|
177 |
self.visual_encoder.load_state_dict(imagebind_ckpt, strict=True)
|
178 |
|
179 |
|
180 |
self.iter = 0
|
181 |
|
182 |
+
self.image_decoder = LinearLayer(1280, 1024, 4).to(torch.float16).to(self.device)
|
183 |
|
184 |
+
self.prompt_learner = PromptLearner(1, 4096).to(torch.float16).to(self.device)
|
185 |
|
186 |
self.loss_focal = FocalLoss()
|
187 |
self.loss_dice = BinaryDiceLoss()
|
|
|
215 |
# # self.llama_model = load_checkpoint_and_dispatch(self.llama_model, vicuna_ckpt_path, device_map=device_map, offload_folder="offload", offload_state_dict = True)
|
216 |
# # self.llama_model.to(torch.float16)
|
217 |
# # try:
|
218 |
+
self.llama_model = AutoModelForCausalLM.from_pretrained(vicuna_ckpt_path, torch_dtype=torch.float16, device_map='auto', load_in_8bit=True, offload_folder="offload1")
|
219 |
# # except:
|
220 |
# pass
|
221 |
# finally:
|
|
|
225 |
self.llama_model.load_state_dict(delta_ckpt, strict=False)
|
226 |
self.llama_model.print_trainable_parameters()
|
227 |
|
228 |
+
self.llama_tokenizer = LlamaTokenizer.from_pretrained(vicuna_ckpt_path, use_fast=False, torch_dtype=torch.float16, device_map='auto', offload_folder="offload2")
|
229 |
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
|
230 |
self.llama_tokenizer.padding_side = "right"
|
231 |
print ('Language decoder initialized.')
|
|
|
634 |
anomaly_map = (100.0 * patch_tokens[layer] @ feats_text_tensor.transpose(-2,-1))
|
635 |
B, L, C = anomaly_map.shape
|
636 |
H = int(np.sqrt(L))
|
637 |
+
# anomaly_map = anomaly_map.to(torch.float16)
|
638 |
anomaly_map = F.interpolate(anomaly_map.permute(0, 2, 1).view(B, 2, H, H),
|
639 |
size=224, mode='bilinear', align_corners=True)
|
640 |
+
# anomaly_map = anomaly_map.to(torch.bfloat16)
|
641 |
anomaly_map = torch.softmax(anomaly_map, dim=1)
|
642 |
anomaly_maps.append(anomaly_map[:,1,:,:])
|
643 |
|
|
|
661 |
sims.append(sim_max)
|
662 |
|
663 |
sim = torch.mean(torch.stack(sims,dim=0), dim=0).reshape(1,1,16,16)
|
664 |
+
# anomaly_map = anomaly_map.to(torch.float16)
|
665 |
sim = F.interpolate(sim,size=224, mode='bilinear', align_corners=True)
|
666 |
+
# anomaly_map = anomaly_map.to(torch.bfloat16)
|
667 |
anomaly_map_ret = 1 - sim # (anomaly_map_ret + 1 - sim) / 2
|
668 |
|
669 |
|