AnomalyGPT / model /openllama.py
FantasticGNU's picture
Update model/openllama.py
cc5caab
from header import *
import torch.nn.functional as F
from .ImageBind import *
from .ImageBind import data
from .modeling_llama import LlamaForCausalLM
from .AnomalyGPT_models import LinearLayer, PromptLearner
from transformers import StoppingCriteria, StoppingCriteriaList
from utils.loss import FocalLoss, BinaryDiceLoss
import kornia as K
import torch
from torch.nn.utils import rnn
from transformers import AutoConfig, AutoModelForCausalLM
from accelerate import init_empty_weights, load_checkpoint_and_dispatch, infer_auto_device_map
CLASS_NAMES = ['bottle', 'cable', 'capsule', 'carpet', 'grid', 'hazelnut', 'leather', 'metal nut', 'pill', 'screw', 'tile', 'toothbrush', 'transistor', 'wood', 'zipper', 'object',
'candle', 'cashew', 'chewinggum', 'fryum', 'macaroni', 'pcb', 'pipe fryum']
prompt_normal = ['{}', 'flawless {}', 'perfect {}', 'unblemished {}', '{} without flaw', '{} without defect', '{} without damage']
prompt_abnormal = ['damaged {}', 'broken {}', '{} with flaw', '{} with defect', '{} with damage']
prompt_state = [prompt_normal, prompt_abnormal]
prompt_templates = ['a photo of a {}.', 'a photo of the {}.']
# prompt_templates = [
# 'a cropped photo of the {}.', 'a cropped photo of a {}.', 'a close-up photo of a {}.', 'a close-up photo of the {}.',
# 'a bright photo of the {}.', 'a bright photo of a {}.', 'a dark photo of a {}.', 'a dark photo of the {}.',
# 'a dark photo of the {}.', 'a dark photo of a {}.', 'a jpeg corrupted photo of a {}.', 'a jpeg corrupted photo of the {}.',
# 'a blurry photo of the {}.', 'a blurry photo of a {}.', 'a photo of a {}.', 'a photo of the {}.',
# 'a photo of the small {}.', 'a photo of a small {}.', 'a photo of the large {}.', 'a photo of a large {}.',
# 'a photo of the {} for visual insprction.', 'a photo of a {} for visual insprction.',
# 'a photo of the {} for anomaly detection.', 'a photo of a {} for anomaly detection.'
# ]
objs = ['bottle', 'cable', 'capsule', 'carpet', 'grid', 'hazelnut', 'leather', 'metal nut', 'pill', 'screw', 'tile', 'toothbrush', 'transistor', 'wood', 'zipper', 'object',
'candle', 'cashew', 'chewinggum', 'fryum', 'macaroni', 'pcb', 'pipe fryum', 'macaroni1', 'macaroni2','pcb1', 'pcb2', 'pcb3', 'pcb4', 'capsules']
prompt_sentences = {}
for obj in objs:
prompt_sentence_obj = []
for i in range(len(prompt_state)):
prompted_state = [state.format(obj) for state in prompt_state[i]]
prompted_sentence = []
for s in prompted_state:
for template in prompt_templates:
prompted_sentence.append(template.format(s))
prompted_sentence = data.load_and_transform_text(prompted_sentence, torch.cuda.current_device())#torch.cuda.current_device())
prompt_sentence_obj.append(prompted_sentence)
prompt_sentences[obj] = prompt_sentence_obj
def encode_text_with_prompt_ensemble(model, obj, device):
global prompt_sentences
normal_sentences = []
abnormal_sentences = []
for idx in range(len(obj)):
sentence = prompt_sentences[obj[idx].replace('_', ' ')]
normal_sentences.append(sentence[0])
abnormal_sentences.append(sentence[1])
normal_sentences = torch.cat(normal_sentences).to(device)
abnormal_sentences = torch.cat(abnormal_sentences).to(device)
class_embeddings_normal = model({ModalityType.TEXT: normal_sentences})[ModalityType.TEXT][0]
class_embeddings_abnormal = model({ModalityType.TEXT: abnormal_sentences})[ModalityType.TEXT][0]
# class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True)
class_embeddings_normal = class_embeddings_normal.reshape((len(obj), len(prompt_templates) * len(prompt_normal), 1024))
class_embeddings_normal = class_embeddings_normal.mean(dim=1, keepdim=True)
class_embeddings_normal = class_embeddings_normal / class_embeddings_normal.norm(dim=-1, keepdim=True)
class_embeddings_abnormal = class_embeddings_abnormal.reshape((len(obj), len(prompt_templates) * len(prompt_abnormal), 1024))
class_embeddings_abnormal = class_embeddings_abnormal.mean(dim=1, keepdim=True)
class_embeddings_abnormal = class_embeddings_abnormal / class_embeddings_abnormal.norm(dim=-1, keepdim=True)
text_features = torch.cat([class_embeddings_normal, class_embeddings_abnormal], dim=1)
return text_features
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops = [], encounters=1):
super().__init__()
self.stops = stops
self.ENCOUNTERS = encounters
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
stop_count = 0
for stop in self.stops:
stop_count = (stop == input_ids[0]).sum().item()
if stop_count >= self.ENCOUNTERS:
return True
return False
def build_one_instance(tokenizer, conversation):
text_list = []
turn_num = len(conversation)
input_ids, target_ids = [], []
for i in range(turn_num):
turn = conversation[i]
role = turn['from']
if i == 0: # the first human turn
assert role == 'human'
text = turn['value'] + '\n### Assistant:'
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += [-100]*len(one_input_id) # do not perform loss regression on human prompt
else:
if role == 'human':
text = 'Human: ' + turn['value'] + '\n### Assistant:'
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += [-100]*len(one_input_id)
elif role == 'gpt':
text = turn['value'] + '\n###'
one_input_id = tokenizer(text, add_special_tokens=False).input_ids
input_ids += one_input_id
target_ids += one_input_id
else:
raise Exception('Wrong Role!!!')
text_list.append(text)
assert len(input_ids) == len(target_ids)
return text_list, input_ids, target_ids
def process_batch_instance(tokenizer, batch_of_conversations, max_tgt_len):
batch_input_ids, batch_target_ids = [], []
for conversation in batch_of_conversations:
_, one_input_ids, one_target_ids = build_one_instance(tokenizer, conversation)
batch_input_ids.append(torch.LongTensor(one_input_ids))
batch_target_ids.append(torch.LongTensor(one_target_ids))
input_ids = rnn.pad_sequence(batch_input_ids, batch_first=True, padding_value=tokenizer.pad_token_id)
target_ids = rnn.pad_sequence(batch_target_ids, batch_first=True, padding_value=-100)
assert input_ids.size() == target_ids.size()
input_ids = input_ids[:,:max_tgt_len]
target_ids = target_ids[:,:max_tgt_len]
attention_mask = input_ids.ne(tokenizer.pad_token_id)
assert attention_mask.size() == input_ids.size()
return input_ids, target_ids, attention_mask.long()
def find_first_file_in_directory(directory_path):
try:
file_list = os.listdir(directory_path)
for item in file_list:
item_path = os.path.join(directory_path, item)
if os.path.isfile(item_path):
return item_path
return None
except OSError as e:
print(f"Error while accessing directory: {e}")
return None
PROMPT_START = '### Human: <Img>'
class OpenLLAMAPEFTModel(nn.Module):
'''LoRA for LLaMa model'''
def __init__(self, **args):
super(OpenLLAMAPEFTModel, self).__init__()
self.args = args
imagebind_ckpt_path = args['imagebind_ckpt_path']
vicuna_ckpt_path = args['vicuna_ckpt_path']
max_tgt_len = args['max_tgt_len']
stage = args['stage']
self.device = torch.cuda.current_device()
print (f'Initializing visual encoder from {imagebind_ckpt_path} ...')
self.visual_encoder, self.visual_hidden_size = imagebind_model.imagebind_huge(args)
self.visual_encoder.to(torch.float16).to(self.device)
imagebind_ckpt = torch.load(imagebind_ckpt_path, map_location=torch.device('cpu'))
self.visual_encoder.load_state_dict(imagebind_ckpt, strict=True)
self.iter = 0
self.image_decoder = LinearLayer(1280, 1024, 4).to(torch.float16).to(self.device)
self.prompt_learner = PromptLearner(1, 4096).to(torch.float16).to(self.device)
self.loss_focal = FocalLoss()
self.loss_dice = BinaryDiceLoss()
# free vision encoder
for name, param in self.visual_encoder.named_parameters():
param.requires_grad = False
self.visual_encoder.eval()
print ('Visual encoder initialized.')
print (f'Initializing language decoder from {vicuna_ckpt_path} ...')
# add the lora module
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=self.args['lora_r'],
lora_alpha=self.args['lora_alpha'],
lora_dropout=self.args['lora_dropout'],
target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj']
)
# config = AutoConfig.from_pretrained(vicuna_ckpt_path)
# with init_empty_weights():
# self.llama_model = AutoModelForCausalLM.from_config(config)
# # device_map = infer_auto_device_map(self.llama_model, no_split_module_classes=["OPTDecoderLayer"], dtype="float16")
# # print(device_map)
device_map = {'model.embed_tokens': 0, 'model.layers.0': 0, 'model.layers.1': 0, 'model.layers.2': 0, 'model.layers.3': 0, 'model.layers.4': 0, 'model.layers.5': 0, 'model.layers.6': 0, 'model.layers.7': 0, 'model.layers.8': 0, 'model.layers.9': 0, 'model.layers.10.self_attn': 0, 'model.layers.10.mlp.gate_proj': 0, 'model.layers.10.mlp.down_proj': 'cpu', 'model.layers.10.mlp.up_proj': 'cpu', 'model.layers.10.mlp.act_fn': 'cpu', 'model.layers.10.input_layernorm': 'cpu', 'model.layers.10.post_attention_layernorm': 'cpu', 'model.layers.11': 'cpu', 'model.layers.12': 'cpu', 'model.layers.13': 'cpu', 'model.layers.14': 'cpu', 'model.layers.15': 'cpu', 'model.layers.16': 'cpu', 'model.layers.17': 'cpu', 'model.layers.18': 'cpu', 'model.layers.19': 'cpu', 'model.layers.20': 'cpu', 'model.layers.21': 'cpu', 'model.layers.22': 'cpu', 'model.layers.23': 'cpu', 'model.layers.24': 'disk', 'model.layers.25': 'disk', 'model.layers.26': 'disk', 'model.layers.27': 'disk', 'model.layers.28': 'disk', 'model.layers.29': 'disk', 'model.layers.30': 'disk', 'model.layers.31.self_attn': 'disk', 'model.layers.31.mlp.gate_proj': 'disk', 'model.layers.31.mlp.down_proj': 'disk', 'model.layers.31.mlp.up_proj': 'disk', 'model.layers.31.mlp.act_fn': 'disk', 'model.layers.31.input_layernorm': 'disk', 'model.layers.31.post_attention_layernorm': 'disk', 'model.norm': 'disk', 'lm_head': 'disk'}
# # self.llama_model = load_checkpoint_and_dispatch(self.llama_model, vicuna_ckpt_path, device_map=device_map, offload_folder="offload", offload_state_dict = True)
# # self.llama_model.to(torch.float16)
# # try:
self.llama_model = AutoModelForCausalLM.from_pretrained(vicuna_ckpt_path, torch_dtype=torch.float16, device_map='auto', load_in_8bit=True)
# # except:
# pass
# finally:
# print(self.llama_model.hf_device_map)
self.llama_model = get_peft_model(self.llama_model, peft_config)
# delta_ckpt = torch.load(args['delta_ckpt_path'], map_location=torch.device('cpu'))
# self.llama_model.load_state_dict(delta_ckpt, strict=False)
self.llama_model.print_trainable_parameters()
self.llama_tokenizer = LlamaTokenizer.from_pretrained(vicuna_ckpt_path, use_fast=False, torch_dtype=torch.float16)
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
self.llama_tokenizer.padding_side = "right"
print ('Language decoder initialized.')
self.llama_proj = nn.Linear(
self.visual_hidden_size, self.llama_model.config.hidden_size
).to(torch.float16).to(self.device)
self.max_tgt_len = max_tgt_len
def rot90_img(self,x,k):
# k is 0,1,2,3
degreesarr = [0., 90., 180., 270., 360]
degrees = torch.tensor(degreesarr[k]).to(self.llama_model.dtype).to(self.device)
x = K.geometry.transform.rotate(x, angle = degrees, padding_mode='reflection')
return x
def encode_video(self, video_paths):
inputs = {ModalityType.VISION: data.load_and_transform_video_data(video_paths, self.device)}
# convert into visual dtype
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
with torch.no_grad():
embeddings = self.visual_encoder(inputs)
video_embeds = embeddings[ModalityType.VISION][0] # bsz x 1024
inputs_llama = self.llama_proj(video_embeds).unsqueeze(1) # bsz x 1 x llama_size
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
return inputs_llama, atts_llama
def encode_audio(self, audio_paths):
inputs = {ModalityType.AUDIO: data.load_and_transform_audio_data(audio_paths, self.device)}
# convert into visual dtype
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
with torch.no_grad():
embeddings = self.visual_encoder(inputs)
audio_embeds = embeddings[ModalityType.AUDIO][0] # bsz x 1024
inputs_llama = self.llama_proj(audio_embeds).unsqueeze(1) # bsz x 1 x llama_size
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
return inputs_llama, atts_llama
def encode_thermal(self, thermal_paths):
inputs = {ModalityType.THERMAL: data.load_and_transform_thermal_data(thermal_paths, self.device)}
# convert into visual dtype
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
with torch.no_grad():
embeddings = self.visual_encoder(inputs)
image_embeds = embeddings['thermal'][0] # bsz x 1024
inputs_llama = self.llama_proj(image_embeds).unsqueeze(1) # bsz x 1 x llama_size
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
return inputs_llama, atts_llama
def encode_image(self, image_paths):
inputs = {ModalityType.VISION: data.load_and_transform_vision_data(image_paths, self.device)}
# convert into visual dtype
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
with torch.no_grad():
embeddings = self.visual_encoder(inputs)
image_embeds = embeddings['vision'][0] # bsz x 1024
patch_features = embeddings['vision'][1] # bsz x h*w x 1280
patch_tokens = self.image_decoder(patch_features) # bsz x h*w x 1024
inputs_llama = self.llama_proj(image_embeds).unsqueeze(1) # bsz x 1 x llama_size
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
return inputs_llama, atts_llama, patch_tokens
def encode_image_for_web_demo(self, image_paths):
inputs = {ModalityType.VISION: data.load_and_transform_vision_data_for_web_demo(image_paths, self.device)}
# convert into visual dtype
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
with torch.no_grad():
embeddings = self.visual_encoder(inputs)
image_embeds = embeddings['vision'][0] # bsz x 1024
patch_features = embeddings['vision'][1] # bsz x h*w x 1280
patch_tokens = self.image_decoder(patch_features) # bsz x h*w x 1024
inputs_llama = self.llama_proj(image_embeds).unsqueeze(1) # bsz x 1 x llama_size
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
return inputs_llama, atts_llama, patch_tokens
def encode_image_for_one_shot(self, image_paths):
inputs = {ModalityType.VISION: data.load_and_transform_vision_data(image_paths, self.device)}
# convert into visual dtype
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
with torch.no_grad():
embeddings = self.visual_encoder(inputs)
patch_features = embeddings['vision'][1] # bsz x h*w x 1280
for i in range(len(patch_features)):
patch_features[i] = patch_features[i].transpose(0, 1)[:, 1:, :]
return patch_features
def encode_image_for_one_shot_from_tensor(self, image_tensors):
if not isinstance(image_tensors, list):
image_tensors = [image_tensors]
inputs = {ModalityType.VISION: torch.stack(image_tensors, dim=0).to(self.device)}
# convert into visual dtype
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
with torch.no_grad():
embeddings = self.visual_encoder(inputs)
patch_features = embeddings['vision'][1] # bsz x h*w x 1280
for i in range(len(patch_features)):
patch_features[i] = patch_features[i].transpose(0, 1)[:, 1:, :]
return patch_features
def encode_image_for_one_shot_with_aug(self, image_paths):
image_tensors = data.load_and_transform_vision_data(image_paths, self.device).to(self.llama_model.dtype)
B,C,H,W = image_tensors.shape
# print(B,C,H,W)
rotated_images = torch.zeros((4, B, C, H, W)).to(self.llama_model.dtype).to(self.device)
for j, degree in enumerate([0, 1, 2, 3]):
rotated_img = self.rot90_img(image_tensors, degree)
# 存储旋转后的图像
rotated_images[j] = rotated_img
image_tensors = rotated_images.transpose(0,1).reshape(B * 4, C, H, W)
inputs = {ModalityType.VISION: image_tensors}
# convert into visual dtype
inputs = {key: inputs[key] for key in inputs}
with torch.no_grad():
embeddings = self.visual_encoder(inputs)
patch_features = embeddings['vision'][1] # bsz x h*w x 1280
for i in range(len(patch_features)):
patch_features[i] = patch_features[i].transpose(0, 1)[:, 1:, :].reshape(B,4,256,1280).reshape(B, 4 * 256, 1280)
return patch_features
def encode_image_from_tensor(self, image_tensors):
if not isinstance(image_tensors, list):
image_tensors = [image_tensors]
inputs = {ModalityType.VISION: torch.stack(image_tensors, dim=0).to(self.device)}
# convert into visual dtype
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
with torch.no_grad():
embeddings = self.visual_encoder(inputs)
image_embeds = embeddings['vision'][0] # bsz x 1024
patch_features = embeddings['vision'][1] # bsz x h*w x 1024
patch_tokens = self.image_decoder(patch_features)
inputs_llama = self.llama_proj(image_embeds).unsqueeze(1) # bsz x 1 x llama_size
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
return inputs_llama, atts_llama, patch_tokens
def encode_image_from_tensor_no_patch(self, image_tensors):
if not isinstance(image_tensors, list):
image_tensors = [image_tensors]
inputs = {ModalityType.VISION: torch.stack(image_tensors, dim=0).to(self.device)}
# convert into visual dtype
inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
with torch.no_grad():
embeddings = self.visual_encoder(inputs)
image_embeds = embeddings['vision'][0] # bsz x 1024
inputs_llama = self.llama_proj(image_embeds).unsqueeze(1) # bsz x 1 x llama_size
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
return inputs_llama, atts_llama
def prompt_wrap(self, img_embeds, input_ids, target_ids, attention_mask, anomaly_embedding = None):
'''
input_ids, target_ids, attention_mask: bsz x s2
'''
input_ids = input_ids.to(self.device) # bsz x s2
target_ids = target_ids.to(self.device) # bsz x s2
attention_mask = attention_mask.to(self.device) # bsz x s2
batch_size = img_embeds.shape[0]
p_before = PROMPT_START
p_before_tokens = self.llama_tokenizer(p_before,
return_tensors="pt", add_special_tokens=False).to(self.device)
# peft model need deeper call
p_before_embeds = self.llama_model.model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s1 x embed_dim
p_middle = '</Img> '
p_middle_tokens = self.llama_tokenizer(p_middle,
return_tensors="pt", add_special_tokens=False).to(self.device)
# peft model need deeper call
p_middle_embeds = self.llama_model.model.model.embed_tokens(p_middle_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s1 x embed_dim
p_after_embeds = self.llama_model.model.model.embed_tokens(input_ids).expand(batch_size, -1, -1) # bsz x s2 x embed_dim
bos = torch.ones([batch_size, 1],
dtype=p_before_tokens.input_ids.dtype,
device=p_before_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id # bsz x 1
bos_embeds = self.llama_model.model.model.embed_tokens(bos) # bsz x 1 x embed_dim
if anomaly_embedding != None:
inputs_embeds = torch.cat([bos_embeds, p_before_embeds, img_embeds, p_middle_embeds, anomaly_embedding, p_after_embeds], dim=1) # bsz x (1+s1+1+s2) x embed_dim
# create targets
empty_targets = (
torch.ones([batch_size, 1+p_before_embeds.size()[1]+1+p_middle_embeds.size()[1] + anomaly_embedding.size()[1]], # 1 (bos) + s1 + 1 (image vector)
dtype=torch.long).to(self.device).fill_(-100)
) # bsz x (1 + s1 + 1)
targets = torch.cat([empty_targets, target_ids], dim=1) # bsz x (1 + s1 + 1 + s2)
assert inputs_embeds.size()[1] == targets.size()[1]
atts_prefix = torch.ones([batch_size, 1+p_before_embeds.size()[1]+1+p_middle_embeds.size()[1] + anomaly_embedding.size()[1]], dtype=torch.long).to(self.device) # bsz x (1 + s1 +1)
attention_mask = torch.cat([atts_prefix, attention_mask], dim=1)
assert attention_mask.size() == targets.size() # bsz x (1 + s1 + 1 + s2)
return inputs_embeds, targets, attention_mask
else:
inputs_embeds = torch.cat([bos_embeds, p_before_embeds, img_embeds, p_middle_embeds, p_after_embeds], dim=1) # bsz x (1+s1+1+s2) x embed_dim
# create targets
empty_targets = (
torch.ones([batch_size, 1+p_before_embeds.size()[1]+1+p_middle_embeds.size()[1]], # 1 (bos) + s1 + 1 (image vector)
dtype=torch.long).to(self.device).fill_(-100)
) # bsz x (1 + s1 + 1)
targets = torch.cat([empty_targets, target_ids], dim=1) # bsz x (1 + s1 + 1 + s2)
assert inputs_embeds.size()[1] == targets.size()[1]
atts_prefix = torch.ones([batch_size, 1+p_before_embeds.size()[1]+1+p_middle_embeds.size()[1]], dtype=torch.long).to(self.device) # bsz x (1 + s1 +1)
attention_mask = torch.cat([atts_prefix, attention_mask], dim=1)
assert attention_mask.size() == targets.size() # bsz x (1 + s1 + 1 + s2)
return inputs_embeds, targets, attention_mask
def forward(self, inputs):
if 'masks' in inputs:
image_paths = inputs['images']
img_embeds, _, patch_tokens = self.encode_image_from_tensor(image_paths)
class_name = inputs['class_names']
loss_pixel = 0
feats_text_tensor = encode_text_with_prompt_ensemble(self.visual_encoder, ['object' for _ in class_name], self.device)
anomaly_maps = []
for layer in range(len(patch_tokens)):
patch_tokens[layer] = patch_tokens[layer] / patch_tokens[layer].norm(dim=-1, keepdim=True)
# print(patch_tokens[layer].shape)
# anomaly_map = torch.bmm(patch_tokens[layer], feats_text_tensor.transpose(-2,-1))
anomaly_map = (100.0 * patch_tokens[layer] @ feats_text_tensor.transpose(-2,-1))
B, L, C = anomaly_map.shape
H = int(np.sqrt(L))
anomaly_map = F.interpolate(anomaly_map.permute(0, 2, 1).view(B, 2, H, H),
size=224, mode='bilinear', align_corners=True)
# anomaly_map_no_softmax = anomaly_map
anomaly_map = torch.softmax(anomaly_map, dim=1)
anomaly_maps.append(anomaly_map)
# anomaly_maps_ns.append(anomaly_map_no_softmax)
gt = inputs['masks']
gt = torch.stack(gt, dim=0).to(self.device)
gt = gt.squeeze()
# print(gt.max(), gt.min())
gt[gt > 0.3], gt[gt <= 0.3] = 1, 0
for num in range(len(anomaly_maps)):
f_loss = self.loss_focal(anomaly_maps[num], gt)
d_loss = self.loss_dice(anomaly_maps[num][:, 1, :, :], gt)
loss_pixel = loss_pixel + f_loss + d_loss
for num in range(len(anomaly_maps)):
anomaly_maps[num] = anomaly_maps[num][:,1,:,:]
anomaly_map_all = torch.mean(torch.stack(anomaly_maps, dim=0), dim=0).unsqueeze(1)
if random.randint(0,1) == 0 and len(inputs['img_paths']) == len(image_paths):
normal_paths = []
for path in inputs['img_paths']:
normal_path = path.replace('test', 'train')
normal_path = find_first_file_in_directory("/".join(normal_path.split('/')[:-2])+'/good')
normal_paths.append(normal_path)
print(normal_paths)
query_patch_tokens = self.encode_image_for_one_shot_from_tensor(image_paths)
normal_patch_tokens = self.encode_image_for_one_shot_with_aug(normal_paths)
sims = []
B = len(image_paths)
for i in range(len(query_patch_tokens)):
query_patch_tokens_reshaped = query_patch_tokens[i].view(B,256,1,1280)
normal_tokens_reshaped = normal_patch_tokens[i].reshape(B,1,-1,1280)
cosine_similarity_matrix = F.cosine_similarity(query_patch_tokens_reshaped, normal_tokens_reshaped, dim=-1)
sim_max, _ = torch.max(cosine_similarity_matrix, dim=-1)
sims.append(sim_max)
sim = torch.mean(torch.stack(sims,dim=0), dim=0).reshape(B,1,16,16)
sim = F.interpolate(sim,size=224, mode='bilinear', align_corners=True)
anomaly_map_all = 1 - sim # (anomaly_map_all + 1 - sim) / 2
anomaly_map_prompts = self.prompt_learner(anomaly_map_all)
# img_embeds = img_embeds + anomaly_map_prompts
output_texts = inputs['texts']
input_ids, target_ids, attention_mask = process_batch_instance(self.llama_tokenizer, output_texts, self.max_tgt_len)
inputs_embeds, targets, attention_mask = self.prompt_wrap(img_embeds, input_ids, target_ids, attention_mask, anomaly_map_prompts)
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
# loss_l2 = torch.norm(anomaly_map_prompts / 2 , p=2)
# loss_l2 = nn.MSELoss()(img_embeds_origin, img_embeds)
# calculate the token accuarcy
chosen_tokens = torch.max(outputs.logits, dim=-1)[1][:, 1:-1] # [B, S-1]
# print(self.llama_tokenizer.decode(chosen_tokens[0], skip_special_tokens=True))
labels = targets[:, 2:]
gen_acc = (chosen_tokens.reshape(-1) == labels.reshape(-1)).to(torch.long) # [B*S]
valid_mask = (labels != -100).reshape(-1)
# print(self.llama_tokenizer.decode(chosen_tokens.reshape(-1)[valid_mask], skip_special_tokens=True))
valid_tokens = gen_acc & valid_mask # [B*S]
gen_acc = valid_tokens.sum().item() / valid_mask.sum().item()
return loss + loss_pixel, gen_acc
else:
image_paths = inputs['image_paths']
img_embeds, _, patch_tokens = self.encode_image_from_tensor(image_paths)
output_texts = inputs['output_texts']
c_name = 'object'
for name in CLASS_NAMES:
if name in output_texts:
c_name = name
break
feats_text_tensor = encode_text_with_prompt_ensemble(self.visual_encoder, ['object'] * len(image_paths), self.device)
anomaly_maps = []
for layer in range(len(patch_tokens)):
patch_tokens[layer] = patch_tokens[layer] / patch_tokens[layer].norm(dim=-1, keepdim=True)
# print(patch_tokens[layer].shape)
# anomaly_map = torch.bmm(patch_tokens[layer], feats_text_tensor.transpose(-2,-1))
anomaly_map = (100.0 * patch_tokens[layer] @ feats_text_tensor.transpose(-2,-1))
B, L, C = anomaly_map.shape
H = int(np.sqrt(L))
anomaly_map = F.interpolate(anomaly_map.permute(0, 2, 1).view(B, 2, H, H),
size=224, mode='bilinear', align_corners=True)
# anomaly_map_no_softmax = anomaly_map
anomaly_map = torch.softmax(anomaly_map, dim=1)
anomaly_maps.append(anomaly_map)
for num in range(len(anomaly_maps)):
anomaly_maps[num] = anomaly_maps[num][:,1,:,:]
anomaly_map_all = torch.mean(torch.stack(anomaly_maps, dim=0), dim=0).unsqueeze(1)
anomaly_map_prompts = self.prompt_learner(anomaly_map_all)
# img_embeds = img_embeds + anomaly_map_prompts
input_ids, target_ids, attention_mask = process_batch_instance(self.llama_tokenizer, output_texts, self.max_tgt_len)
inputs_embeds, targets, attention_mask = self.prompt_wrap(img_embeds, input_ids, target_ids, attention_mask, anomaly_map_prompts)
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
# calculate the token accuarcy
chosen_tokens = torch.max(outputs.logits, dim=-1)[1][:, 1:-1] # [B, S-1]
labels = targets[:, 2:]
gen_acc = (chosen_tokens.reshape(-1) == labels.reshape(-1)).to(torch.long) # [B*S]
valid_mask = (labels != -100).reshape(-1)
valid_tokens = gen_acc & valid_mask # [B*S]
gen_acc = valid_tokens.sum().item() / valid_mask.sum().item()
return loss, gen_acc
def extract_multimodal_feature(self, inputs, web_demo):
features = []
if inputs['image_paths']:
prompt = inputs['prompt']
c_name = 'object'
for name in CLASS_NAMES:
if name in prompt:
c_name = name
break
if not web_demo:
image_embeds, _, patch_tokens = self.encode_image(inputs['image_paths'])
feats_text_tensor = encode_text_with_prompt_ensemble(self.visual_encoder, [c_name], self.device)
else:
image_embeds, _, patch_tokens = self.encode_image_for_web_demo(inputs['image_paths'])
feats_text_tensor = encode_text_with_prompt_ensemble(self.visual_encoder, ['object'], self.device)
anomaly_maps = []
for layer in range(len(patch_tokens)):
patch_tokens[layer] = patch_tokens[layer] / patch_tokens[layer].norm(dim=-1, keepdim=True)
# print(patch_tokens[layer].shape)
# anomaly_map = torch.bmm(patch_tokens[layer], feats_text_tensor.transpose(-2,-1))
anomaly_map = (100.0 * patch_tokens[layer] @ feats_text_tensor.transpose(-2,-1))
B, L, C = anomaly_map.shape
H = int(np.sqrt(L))
# anomaly_map = anomaly_map.to(torch.float16)
anomaly_map = F.interpolate(anomaly_map.permute(0, 2, 1).view(B, 2, H, H),
size=224, mode='bilinear', align_corners=True)
# anomaly_map = anomaly_map.to(torch.bfloat16)
anomaly_map = torch.softmax(anomaly_map, dim=1)
anomaly_maps.append(anomaly_map[:,1,:,:])
anomaly_map_ret = torch.mean(torch.stack(anomaly_maps, dim=0), dim=0).unsqueeze(1)
# anomaly_map_all = anomaly_map_ret.unsqueeze(1).repeat((1,3,1,1))
# anomaly_map_feature, _, _ = self.encode_image_from_tensor(anomaly_map_all)
# image_embeds = anomaly_map_feature + image_embeds
if inputs['normal_img_paths']:
query_patch_tokens = self.encode_image_for_one_shot(inputs['image_paths'])
if 'mvtec' in 'normal_img_paths':
normal_patch_tokens = self.encode_image_for_one_shot_with_aug(inputs['normal_img_paths'])
else:
normal_patch_tokens = self.encode_image_for_one_shot(inputs['normal_img_paths'])
sims = []
for i in range(len(query_patch_tokens)):
query_patch_tokens_reshaped = query_patch_tokens[i].view(256,1,1280)
normal_tokens_reshaped = normal_patch_tokens[i].reshape(1,-1,1280)
cosine_similarity_matrix = F.cosine_similarity(query_patch_tokens_reshaped, normal_tokens_reshaped, dim=2)
sim_max, _ = torch.max(cosine_similarity_matrix, dim=1)
sims.append(sim_max)
sim = torch.mean(torch.stack(sims,dim=0), dim=0).reshape(1,1,16,16)
# anomaly_map = anomaly_map.to(torch.float16)
sim = F.interpolate(sim,size=224, mode='bilinear', align_corners=True)
# anomaly_map = anomaly_map.to(torch.bfloat16)
anomaly_map_ret = 1 - sim # (anomaly_map_ret + 1 - sim) / 2
features.append(image_embeds)
if inputs['audio_paths']:
audio_embeds, _ = self.encode_audio(inputs['audio_paths'])
features.append(audio_embeds)
if inputs['video_paths']:
video_embeds, _ = self.encode_video(inputs['video_paths'])
features.append(video_embeds)
if inputs['thermal_paths']:
thermal_embeds, _ = self.encode_thermal(inputs['thermal_paths'])
features.append(thermal_embeds)
feature_embeds = torch.cat(features).sum(dim=0).unsqueeze(0)
return feature_embeds, anomaly_map_ret
def prepare_generation_embedding(self, inputs, web_demo):
prompt = inputs['prompt']
# if len(inputs['modality_embeds']) == 1:
# feature_embeds = inputs['modality_embeds'][0]
# else:
feature_embeds, anomaly_map = self.extract_multimodal_feature(inputs, web_demo)
# print(anomaly_map.shape)
inputs['modality_embeds'].append(feature_embeds)
batch_size = feature_embeds.shape[0]
p_before = PROMPT_START
p_before_tokens = self.llama_tokenizer(p_before,
return_tensors="pt", add_special_tokens=False).to(self.device)
p_before_embeds = self.llama_model.model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s1 x embed_dim
p_middle = '</Img> '
p_middle_tokens = self.llama_tokenizer(p_middle,
return_tensors="pt", add_special_tokens=False).to(self.device)
# peft model need deeper call
p_middle_embeds = self.llama_model.model.model.embed_tokens(p_middle_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s1 x embed_dim
# self.prompt_learner.eval()
anomaly_map_prompts = self.prompt_learner(anomaly_map)
text = prompt + '\n### Assistant:'
p_after_tokens = self.llama_tokenizer(text, add_special_tokens=False, return_tensors='pt').to(self.device)
p_after_embeds = self.llama_model.model.model.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s2 x embed_dim
bos = torch.ones([batch_size, 1],
dtype=p_before_tokens.input_ids.dtype,
device=p_before_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id # bsz x 1
bos_embeds = self.llama_model.model.model.embed_tokens(bos) # bsz x 1 x embed_dim
inputs_embeds = torch.cat([bos_embeds, p_before_embeds, feature_embeds, p_middle_embeds, anomaly_map_prompts, p_after_embeds], dim=1) # bsz x (1+s1+1+s2) x embed_dim
return inputs_embeds, anomaly_map
def generate(self, inputs, web_demo=False):
'''
inputs = {
'image_paths': optional,
'audio_paths': optional
'video_paths': optional
'thermal_paths': optional
'mode': generation mode,
'prompt': human input prompt,
'max_tgt_len': generation length,
'top_p': top_p,
'temperature': temperature
'modality_embeds': None or torch.tensor
'modality_cache': save the image cache
}
'''
# self.prompt_learner.eval()
# self.llama_model.eval()
# self.llama_proj.eval()
# self.image_decoder.eval()
# self.llama_tokenizer.eval()
input_embeds, pixel_output = self.prepare_generation_embedding(inputs, web_demo)
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=[2277], encounters=1)])
outputs = self.llama_model.generate(
inputs_embeds=input_embeds,
max_new_tokens=inputs['max_tgt_len'],
top_p=inputs['top_p'],
temperature=inputs['temperature'],
do_sample=True,
use_cache=True,
stopping_criteria=stopping_criteria,
)
output_text = self.llama_tokenizer.decode(outputs[0][:-2], skip_special_tokens=True)
return output_text, pixel_output