Spaces:
Running
on
T4
Running
on
T4
import numpy as np | |
import os | |
import random | |
import shutil | |
import torch | |
import torch.distributed as dist | |
import torch.autograd as autograd | |
from PIL import ImageFilter | |
from easydict import EasyDict | |
import yaml | |
# from datas.dataset_3d import Dataset_3D | |
def merge_new_config(config, new_config): | |
for key, val in new_config.items(): | |
if not isinstance(val, dict): | |
if key == '_base_': | |
with open(new_config['_base_'], 'r') as f: | |
try: | |
val = yaml.load(f, Loader=yaml.FullLoader) | |
except: | |
val = yaml.load(f) | |
config[key] = EasyDict() | |
merge_new_config(config[key], val) | |
else: | |
config[key] = val | |
continue | |
if key not in config: | |
config[key] = EasyDict() | |
merge_new_config(config[key], val) | |
return config | |
def cfg_from_yaml_file(cfg_file): | |
config = EasyDict() | |
with open(cfg_file, 'r') as f: | |
# try: | |
new_config = yaml.load(f, Loader=yaml.FullLoader) | |
# except: | |
# new_config = yaml.load(f) | |
merge_new_config(config=config, new_config=new_config) | |
return config | |
def get_model(model): | |
if isinstance(model, torch.nn.DataParallel) \ | |
or isinstance(model, torch.nn.parallel.DistributedDataParallel): | |
return model.module | |
else: | |
return model | |
def setup_for_distributed(is_master): | |
""" | |
This function disables printing when not in master process | |
""" | |
import builtins as __builtin__ | |
builtin_print = __builtin__.print | |
def print(*args, **kwargs): | |
force = kwargs.pop('force', False) | |
if is_master or force: | |
builtin_print(*args, **kwargs) | |
__builtin__.print = print | |
def is_dist_avail_and_initialized(): | |
if not dist.is_available(): | |
return False | |
if not dist.is_initialized(): | |
return False | |
return True | |
def get_world_size(): | |
if not is_dist_avail_and_initialized(): | |
return 1 | |
return dist.get_world_size() | |
def get_rank(): | |
if not is_dist_avail_and_initialized(): | |
return 0 | |
return dist.get_rank() | |
def is_main_process(): | |
return get_rank() == 0 | |
def save_on_master(state, is_best, output_dir): | |
if is_main_process(): | |
ckpt_path = '{}/checkpoint_{}.pt'.format(output_dir, state['epoch']) | |
best_path = f'{output_dir}/checkpoint_best.pt' | |
torch.save(state, ckpt_path) | |
if is_best: | |
shutil.copyfile(ckpt_path, best_path) | |
def init_distributed_mode(args): | |
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: | |
args.rank = int(os.environ["RANK"]) | |
args.world_size = int(os.environ['WORLD_SIZE']) | |
args.gpu = int(os.environ['LOCAL_RANK']) | |
elif 'SLURM_PROCID' in os.environ: | |
args.rank = int(os.environ['SLURM_PROCID']) | |
args.gpu = args.rank % torch.cuda.device_count() | |
else: | |
print('Not using distributed mode') | |
args.distributed = False | |
return | |
args.distributed = True | |
torch.cuda.set_device(args.gpu) | |
args.dist_backend = 'nccl' | |
print('| distributed init (rank {}): {}'.format( | |
args.rank, args.dist_url), flush=True) | |
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, | |
world_size=args.world_size, rank=args.rank) | |
torch.distributed.barrier() | |
setup_for_distributed(args.rank == 0) | |
def scaled_all_reduce(tensors, is_scale=True): | |
"""Performs the scaled all_reduce operation on the provided tensors. | |
The input tensors are modified in-place. Currently supports only the sum | |
reduction operator. The reduced values are scaled by the inverse size of the | |
world size. | |
""" | |
world_size = get_world_size() | |
# There is no need for reduction in the single-proc case | |
if world_size == 1: | |
return tensors | |
# Queue the reductions | |
reductions = [] | |
for tensor in tensors: | |
reduction = dist.all_reduce(tensor, async_op=True) | |
reductions.append(reduction) | |
# Wait for reductions to finish | |
for reduction in reductions: | |
reduction.wait() | |
# Scale the results | |
if is_scale: | |
for tensor in tensors: | |
tensor.mul_(1.0 / world_size) | |
return tensors | |
def all_gather_batch(tensors): | |
""" | |
Performs all_gather operation on the provided tensors. | |
""" | |
# Queue the gathered tensors | |
world_size = get_world_size() | |
# There is no need for reduction in the single-proc case | |
if world_size == 1: | |
return tensors | |
tensor_list = [] | |
output_tensor = [] | |
for tensor in tensors: | |
tensor_all = [torch.ones_like(tensor) for _ in range(world_size)] | |
dist.all_gather( | |
tensor_all, | |
tensor, | |
async_op=False # performance opt | |
) | |
tensor_list.append(tensor_all) | |
for tensor_all in tensor_list: | |
output_tensor.append(torch.cat(tensor_all, dim=0)) | |
return output_tensor | |
class GatherLayer(autograd.Function): | |
""" | |
Gather tensors from all workers with support for backward propagation: | |
This implementation does not cut the gradients as torch.distributed.all_gather does. | |
""" | |
def forward(ctx, x): | |
output = [torch.zeros_like(x) for _ in range(dist.get_world_size())] | |
dist.all_gather(output, x) | |
return tuple(output) | |
def backward(ctx, *grads): | |
all_gradients = torch.stack(grads) | |
dist.all_reduce(all_gradients) | |
return all_gradients[dist.get_rank()] | |
def all_gather_batch_with_grad(tensors): | |
""" | |
Performs all_gather operation on the provided tensors. | |
Graph remains connected for backward grad computation. | |
""" | |
# Queue the gathered tensors | |
world_size = get_world_size() | |
# There is no need for reduction in the single-proc case | |
if world_size == 1: | |
return tensors | |
tensor_list = [] | |
output_tensor = [] | |
for tensor in tensors: | |
tensor_all = GatherLayer.apply(tensor) | |
tensor_list.append(tensor_all) | |
for tensor_all in tensor_list: | |
output_tensor.append(torch.cat(tensor_all, dim=0)) | |
return output_tensor | |
def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, start_warmup_value=0): | |
warmup_schedule = np.array([]) | |
warmup_iters = warmup_epochs * niter_per_ep | |
if warmup_epochs > 0: | |
warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) | |
iters = np.arange(epochs * niter_per_ep - warmup_iters) | |
schedule = final_value + 0.5 * (base_value - final_value) * (1 + np.cos(np.pi * iters / len(iters))) | |
schedule = np.concatenate((warmup_schedule, schedule)) | |
assert len(schedule) == epochs * niter_per_ep | |
return schedule | |
class GaussianBlur(object): | |
"""Gaussian blur augmentation in SimCLR https://arxiv.org/abs/2002.05709""" | |
def __init__(self, sigma=[.1, 2.]): | |
self.sigma = sigma | |
def __call__(self, x): | |
sigma = random.uniform(self.sigma[0], self.sigma[1]) | |
x = x.filter(ImageFilter.GaussianBlur(radius=sigma)) | |
return x | |
# def get_dataset(train_transform, tokenizer, args, dataset_name=None): | |
# dataset_3d = Dataset_3D(args, tokenizer, dataset_name, train_transform) | |
# return dataset_3d.dataset |