Spaces:
Sleeping
Sleeping
import torch | |
import datetime | |
import types | |
import deepspeed | |
from transformers.deepspeed import HfDeepSpeedConfig | |
import transformers | |
import numpy as np | |
from collections import OrderedDict | |
from torch.utils.data import Dataset, DataLoader | |
from torch.nn.utils import clip_grad_norm_ | |
from torch.cuda.amp import autocast, GradScaler | |
from torch.nn import DataParallel | |
from torch.optim import lr_scheduler | |
import torch.optim as optim | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from tqdm import tqdm | |
import os | |
import re | |
import math | |
import random | |
import json | |
import time | |
import logging | |
from copy import deepcopy | |
import ipdb | |
import argparse | |
from model.ImageBind import data | |
from transformers import LlamaTokenizer, LlamaForCausalLM, LlamaConfig | |
from torch.nn.utils.rnn import pad_sequence | |
from peft import LoraConfig, TaskType, get_peft_model | |
logging.getLogger("transformers").setLevel(logging.WARNING) | |
logging.getLogger("transformers.tokenization_utils").setLevel(logging.ERROR) | |
os.environ['TOKENIZERS_PARALLELISM'] = 'false' | |