Spaces:
Starting
on
T4
Starting
on
T4
from header import * | |
class DeepSpeedAgent: | |
def __init__(self, model, args): | |
super(DeepSpeedAgent, self).__init__() | |
self.args = args | |
self.model = model | |
self.load_stage_1_parameters(args["delta_ckpt_path"]) | |
for name, param in self.model.named_parameters(): | |
param.requires_grad = False | |
for name, param in self.model.image_decoder.named_parameters(): | |
param.requires_grad = True | |
for name, param in self.model.prompt_learner.named_parameters(): | |
param.requires_grad = True | |
# load config parameters of deepspeed | |
ds_params = json.load(open(self.args['ds_config_path'])) | |
ds_params['scheduler']['params']['total_num_steps'] = self.args['total_steps'] | |
ds_params['scheduler']['params']['warmup_num_steps'] = max(10, int(self.args['total_steps'] * self.args['warmup_rate'])) | |
self.ds_engine, self.optimizer, _ , _ = deepspeed.initialize( | |
model=self.model, | |
model_parameters=self.model.parameters(), | |
config_params=ds_params, | |
dist_init_required=True, | |
args=types.SimpleNamespace(**args) | |
) | |
def predict(self, batch): | |
self.model.eval() | |
string = self.model.generate_one_sample(batch) | |
return string | |
def train_model(self, batch, current_step=0, pbar=None): | |
self.ds_engine.module.train() | |
loss, mle_acc = self.ds_engine(batch) | |
self.ds_engine.backward(loss) | |
self.ds_engine.step() | |
pbar.set_description(f'[!] loss: {round(loss.item(), 4)}; token_acc: {round(mle_acc*100, 2)}') | |
pbar.update(1) | |
if self.args['local_rank'] == 0 and self.args['log_path'] and current_step % self.args['logging_step'] == 0: | |
elapsed = pbar.format_dict['elapsed'] | |
rate = pbar.format_dict['rate'] | |
remaining = (pbar.total - pbar.n) / rate if rate and pbar.total else 0 | |
remaining = str(datetime.timedelta(seconds=remaining)) | |
logging.info(f'[!] progress: {round(pbar.n/pbar.total, 5)}; remaining time: {remaining}; loss: {round(loss.item(), 4)}; token_acc: {round(mle_acc*100, 2)}') | |
mle_acc *= 100 | |
return mle_acc | |
def save_model(self, path, current_step): | |
# only save trainable model parameters | |
param_grad_dic = { | |
k: v.requires_grad for (k, v) in self.ds_engine.module.named_parameters() | |
} | |
state_dict = self.ds_engine.module.state_dict() | |
checkpoint = OrderedDict() | |
for k, v in self.ds_engine.module.named_parameters(): | |
if v.requires_grad: | |
print(k) | |
checkpoint[k] = v | |
torch.save(checkpoint, f'{path}/pytorch_model.pt') | |
# save tokenizer | |
self.model.llama_tokenizer.save_pretrained(path) | |
# save configuration | |
self.model.llama_model.config.save_pretrained(path) | |
print(f'[!] save model into {path}') | |
def load_stage_1_parameters(self, path): | |
delta_ckpt = torch.load(path, map_location=torch.device('cpu')) | |
self.model.load_state_dict(delta_ckpt, strict=False) | |