AnomalyGPT / app.py
FantasticGu
change to gpu
3b7c344
raw
history blame
8.02 kB
import gradio as gr
import mdtex2html
from model.openllama import OpenLLAMAPEFTModel
import torch
from io import BytesIO
from PIL import Image as PILImage
import cv2
import numpy as np
from matplotlib import pyplot as plt
from torchvision import transforms
# init the model
args = {
'model': 'openllama_peft',
'imagebind_ckpt_path': './pretrained_ckpt/imagebind_ckpt/imagebind_huge.pth',
'vicuna_ckpt_path': './pretrained_ckpt/vicuna_ckpt/7b_v0',
'anomalygpt_ckpt_path': './ckpt/train_supervised/pytorch_model.pt',
'delta_ckpt_path': './pretrained_ckpt/pandagpt_ckpt/7b/pytorch_model.pt',
'stage': 2,
'max_tgt_len': 128,
'lora_r': 32,
'lora_alpha': 32,
'lora_dropout': 0.1
}
model = OpenLLAMAPEFTModel(**args)
delta_ckpt = torch.load(args['delta_ckpt_path'], map_location=torch.device('cpu'))
model.load_state_dict(delta_ckpt, strict=False)
delta_ckpt = torch.load(args['anomalygpt_ckpt_path'], map_location=torch.device('cpu'))
model.load_state_dict(delta_ckpt, strict=False)
model = model.eval().to(torch.float16)#.half()#.cuda()
# model.image_decoder = model.image_decoder.cuda()
# model.prompt_learner = model.prompt_learner.cuda()
"""Override Chatbot.postprocess"""
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f'<br></code></pre>'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "&lt;")
line = line.replace(">", "&gt;")
line = line.replace(" ", "&nbsp;")
line = line.replace("*", "&ast;")
line = line.replace("_", "&lowbar;")
line = line.replace("-", "&#45;")
line = line.replace(".", "&#46;")
line = line.replace("!", "&#33;")
line = line.replace("(", "&#40;")
line = line.replace(")", "&#41;")
line = line.replace("$", "&#36;")
lines[i] = "<br>"+line
text = "".join(lines)
return text
def predict(
input,
image_path,
normal_img_path,
chatbot,
max_length,
top_p,
temperature,
history,
modality_cache,
):
if image_path is None and normal_img_path is None:
return [(input, "There is no input data provided! Please upload your data and start the conversation.")]
else:
print(f'[!] image path: {image_path}\n[!] normal image path: {normal_img_path}\n')
# prepare the prompt
prompt_text = ''
for idx, (q, a) in enumerate(history):
if idx == 0:
prompt_text += f'{q}\n### Assistant: {a}\n###'
else:
prompt_text += f' Human: {q}\n### Assistant: {a}\n###'
if len(history) == 0:
prompt_text += f'{input}'
else:
prompt_text += f' Human: {input}'
response, pixel_output = model.generate({
'prompt': prompt_text,
'image_paths': [image_path] if image_path else [],
'normal_img_paths': [normal_img_path] if normal_img_path else [],
'audio_paths': [],
'video_paths': [],
'thermal_paths': [],
'top_p': top_p,
'temperature': temperature,
'max_tgt_len': max_length,
'modality_embeds': modality_cache
},web_demo=True)
chatbot.append((parse_text(input), parse_text(response)))
history.append((input, response))
plt.imshow(pixel_output.to(torch.float16).reshape(224,224).detach().cpu(), cmap='binary_r')
plt.axis('off')
plt.savefig('output.png',bbox_inches='tight',pad_inches = 0)
target_size = 224
original_width, original_height = PILImage.open(image_path).size
if original_width > original_height:
new_width = target_size
new_height = int(target_size * (original_height / original_width))
else:
new_height = target_size
new_width = int(target_size * (original_width / original_height))
new_image = PILImage.new('L', (target_size, target_size), 255) # 'L' mode for grayscale
paste_x = (target_size - new_width) // 2
paste_y = (target_size - new_height) // 2
pixel_output = PILImage.open('output.png').resize((new_width, new_height), PILImage.LANCZOS)
new_image.paste(pixel_output, (paste_x, paste_y))
new_image.save('output.png')
image = cv2.imread('output.png', cv2.IMREAD_GRAYSCALE)
kernel = np.ones((3, 3), np.uint8)
eroded_image = cv2.erode(image, kernel, iterations=1)
cv2.imwrite('output.png', eroded_image)
output = PILImage.open('output.png').convert('L')
return chatbot, history, modality_cache, output
def reset_user_input():
return gr.update(value='')
def reset_state():
return gr.update(value=''), None, None, [], [], [], PILImage.open('ffffff.png')
examples = ['hazelnut_cut.png','capsule_crack.png','carpet_normal.jpg']
with gr.Blocks() as demo:
gr.HTML("""<h1 align="center">Demo of AnomalyGPT</h1>""")
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
image_path = gr.Image(type="filepath", label="Query Image", value=examples[0])
with gr.Row():
normal_img_path = gr.Image(type="filepath", label="Normal Image (optional)", value=None)
with gr.Row():
gr.Examples(examples=examples, inputs=[image_path])
with gr.Row():
max_length = gr.Slider(0, 512, value=512, step=1.0, label="Max length", interactive=True)
top_p = gr.Slider(0, 1, value=0.01, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 1, value=1.0, step=0.01, label="Temperature", interactive=True)
with gr.Column(scale=3):
with gr.Row():
with gr.Column(scale=6):
chatbot = gr.Chatbot().style(height=440)
with gr.Column(scale=4):
# gr.Image(output)
image_output = gr.Image(interactive=False, label="Localization Output", type='pil',value=PILImage.open('ffffff.png'))
with gr.Row():
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=12).style(container=False)
with gr.Row():
with gr.Column(scale=2):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
history = gr.State([])
modality_cache = gr.State([])
submitBtn.click(
predict, [
user_input,
image_path,
normal_img_path,
chatbot,
max_length,
top_p,
temperature,
history,
modality_cache,
], [
chatbot,
history,
modality_cache,
image_output
],
show_progress=True
)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[
user_input,
image_path,
normal_img_path,
chatbot,
history,
modality_cache,
image_output
], show_progress=True)
demo.queue().launch()