File size: 4,295 Bytes
a73717c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from math import exp

class FocalLoss(nn.Module):
    """
    copy from: https://github.com/Hsuxu/Loss_ToolBox-PyTorch/blob/master/FocalLoss/FocalLoss.py
    This is a implementation of Focal Loss with smooth label cross entropy supported which is proposed in
    'Focal Loss for Dense Object Detection. (https://arxiv.org/abs/1708.02002)'
        Focal_Loss= -1*alpha*(1-pt)*log(pt)
    :param alpha: (tensor) 3D or 4D the scalar factor for this criterion
    :param gamma: (float,double) gamma > 0 reduces the relative loss for well-classified examples (p>0.5) putting more
                    focus on hard misclassified example
    :param smooth: (float,double) smooth value when cross entropy
    :param balance_index: (int) balance class index, should be specific when alpha is float
    :param size_average: (bool, optional) By default, the losses are averaged over each loss element in the batch.
    """

    def __init__(self, apply_nonlin=None, alpha=None, gamma=2, balance_index=0, smooth=1e-5, size_average=True):
        super(FocalLoss, self).__init__()
        self.apply_nonlin = apply_nonlin
        self.alpha = alpha
        self.gamma = gamma
        self.balance_index = balance_index
        self.smooth = smooth
        self.size_average = size_average

        if self.smooth is not None:
            if self.smooth < 0 or self.smooth > 1.0:
                raise ValueError('smooth value should be in [0,1]')

    def forward(self, logit, target):
        # logit: [B, 2, 224, 224]
        # target:[B, 1, 224, 224]
        if self.apply_nonlin is not None:
            logit = self.apply_nonlin(logit)
        # 2
        num_class = logit.shape[1]

        if logit.dim() > 2:
            # N,C,d1,d2 -> N,C,m (m=d1*d2*...)
            # [B, 2, 224*224]
            logit = logit.view(logit.size(0), logit.size(1), -1)
            # [B, 224*224, 2]
            logit = logit.permute(0, 2, 1).contiguous()
            # [B*224*224, 2]
            logit = logit.view(-1, logit.size(-1))
        target = torch.squeeze(target, 1)
        # [B*224*224, 1]
        target = target.view(-1, 1)
        alpha = self.alpha

        if alpha is None:
            alpha = torch.ones(num_class, 1)
        elif isinstance(alpha, (list, np.ndarray)):
            assert len(alpha) == num_class
            alpha = torch.FloatTensor(alpha).view(num_class, 1)
            alpha = alpha / alpha.sum()
        elif isinstance(alpha, float):
            alpha = torch.ones(num_class, 1)
            alpha = alpha * (1 - self.alpha)
            alpha[self.balance_index] = self.alpha

        else:
            raise TypeError('Not support alpha type')

        if alpha.device != logit.device:
            alpha = alpha.to(logit.device)

        # [B*224*224, 1]
        idx = target.cpu().long()

        # [B*224*224, 2]
        one_hot_key = torch.FloatTensor(target.size(0), num_class).zero_()

        one_hot_key = one_hot_key.scatter_(1, idx, 1)
        if one_hot_key.device != logit.device:
            one_hot_key = one_hot_key.to(logit.device)

        if self.smooth:
            one_hot_key = torch.clamp(
                one_hot_key, self.smooth / (num_class - 1), 1.0 - self.smooth)
        pt = (one_hot_key * logit).sum(1) + self.smooth
        logpt = pt.log()

        gamma = self.gamma

        alpha = alpha[idx]
        alpha = torch.squeeze(alpha)
        loss = -1 * alpha * torch.pow((1 - pt), gamma) * logpt

        if self.size_average:
            loss = loss.mean()
        return loss


class BinaryDiceLoss(nn.Module):
    def __init__(self):
        super(BinaryDiceLoss, self).__init__()

    def forward(self, input, targets):
        # 获取每个批次的大小 N
        N = targets.size()[0]
        # 平滑变量
        smooth = 1
        # 将宽高 reshape 到同一纬度
        input_flat = input.view(N, -1)
        targets_flat = targets.view(N, -1)

        # 计算交集
        intersection = input_flat * targets_flat
        N_dice_eff = (2 * intersection.sum(1) + smooth) / (input_flat.sum(1) + targets_flat.sum(1) + smooth)
        # 计算一个批次中平均每张图的损失
        loss = 1 - N_dice_eff.sum() / N
        return loss