File size: 38,792 Bytes
a73717c
 
 
 
 
 
 
 
 
 
 
 
a7fa8fe
cf28296
a73717c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b7c344
a73717c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b7c344
4b9278e
a73717c
 
 
ab9dae6
9f4c400
0d05e34
 
a73717c
 
 
0d05e34
a73717c
0d05e34
a73717c
ab9dae6
 
a73717c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d52f2be
 
 
 
 
 
3b7c344
d52f2be
 
 
627e5c1
d52f2be
3157e75
 
 
a73717c
 
 
3b7c344
a73717c
 
 
 
 
 
 
 
 
4b9278e
a73717c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
from header import *
import torch.nn.functional as F
from .ImageBind import *
from .ImageBind import data
from .modeling_llama import LlamaForCausalLM
from .AnomalyGPT_models import LinearLayer, PromptLearner
from transformers import StoppingCriteria, StoppingCriteriaList
from utils.loss import FocalLoss, BinaryDiceLoss
import kornia as K

import torch
from torch.nn.utils import rnn
from transformers import AutoConfig, AutoModelForCausalLM
from accelerate import init_empty_weights, load_checkpoint_and_dispatch, infer_auto_device_map

CLASS_NAMES = ['bottle', 'cable', 'capsule', 'carpet', 'grid', 'hazelnut', 'leather', 'metal nut', 'pill', 'screw', 'tile', 'toothbrush', 'transistor', 'wood', 'zipper', 'object',
               'candle', 'cashew', 'chewinggum', 'fryum', 'macaroni', 'pcb', 'pipe fryum']

prompt_normal = ['{}', 'flawless {}', 'perfect {}', 'unblemished {}', '{} without flaw', '{} without defect', '{} without damage']
prompt_abnormal = ['damaged {}', 'broken {}', '{} with flaw', '{} with defect', '{} with damage']

prompt_state = [prompt_normal, prompt_abnormal]
prompt_templates = ['a photo of a {}.', 'a photo of the {}.']
# prompt_templates = [
#                         'a cropped photo of the {}.', 'a cropped photo of a {}.', 'a close-up photo of a {}.', 'a close-up photo of the {}.',
#                         'a bright photo of the {}.', 'a bright photo of a {}.', 'a dark photo of a {}.', 'a dark photo of the {}.',
#                         'a dark photo of the {}.', 'a dark photo of a {}.', 'a jpeg corrupted photo of a {}.', 'a jpeg corrupted photo of the {}.',
#                         'a blurry photo of the {}.', 'a blurry photo of a {}.', 'a photo of a {}.', 'a photo of the {}.',
#                         'a photo of the small {}.', 'a photo of a small {}.', 'a photo of the large {}.', 'a photo of a large {}.',
#                         'a photo of the {} for visual insprction.', 'a photo of a {} for visual insprction.',
#                         'a photo of the {} for anomaly detection.', 'a photo of a {} for anomaly detection.'
#                         ]
objs = ['bottle', 'cable', 'capsule', 'carpet', 'grid', 'hazelnut', 'leather', 'metal nut', 'pill', 'screw', 'tile', 'toothbrush', 'transistor', 'wood', 'zipper', 'object',
        'candle', 'cashew', 'chewinggum', 'fryum', 'macaroni', 'pcb', 'pipe fryum', 'macaroni1', 'macaroni2','pcb1', 'pcb2', 'pcb3', 'pcb4', 'capsules']

prompt_sentences = {}

for obj in objs:
    prompt_sentence_obj = []
    for i in range(len(prompt_state)):
        prompted_state = [state.format(obj) for state in prompt_state[i]]
        prompted_sentence = []
        for s in prompted_state:
            for template in prompt_templates:
                prompted_sentence.append(template.format(s))
        prompted_sentence = data.load_and_transform_text(prompted_sentence, torch.cuda.current_device())#torch.cuda.current_device())
        prompt_sentence_obj.append(prompted_sentence)
    prompt_sentences[obj] = prompt_sentence_obj



def encode_text_with_prompt_ensemble(model, obj, device):

    global prompt_sentences
    normal_sentences = []
    abnormal_sentences = []
    for idx in range(len(obj)):
        sentence = prompt_sentences[obj[idx].replace('_', ' ')]
        normal_sentences.append(sentence[0])
        abnormal_sentences.append(sentence[1])

    normal_sentences = torch.cat(normal_sentences).to(device)
    abnormal_sentences = torch.cat(abnormal_sentences).to(device)

    class_embeddings_normal = model({ModalityType.TEXT: normal_sentences})[ModalityType.TEXT][0]
    class_embeddings_abnormal = model({ModalityType.TEXT: abnormal_sentences})[ModalityType.TEXT][0]
    # class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True)

    class_embeddings_normal = class_embeddings_normal.reshape((len(obj), len(prompt_templates) * len(prompt_normal), 1024))
    class_embeddings_normal = class_embeddings_normal.mean(dim=1, keepdim=True)
    class_embeddings_normal = class_embeddings_normal / class_embeddings_normal.norm(dim=-1, keepdim=True)

    class_embeddings_abnormal = class_embeddings_abnormal.reshape((len(obj), len(prompt_templates) * len(prompt_abnormal), 1024))
    class_embeddings_abnormal = class_embeddings_abnormal.mean(dim=1, keepdim=True)
    class_embeddings_abnormal = class_embeddings_abnormal / class_embeddings_abnormal.norm(dim=-1, keepdim=True)

    text_features = torch.cat([class_embeddings_normal, class_embeddings_abnormal], dim=1)

    return text_features



class StoppingCriteriaSub(StoppingCriteria):

    def __init__(self, stops = [], encounters=1):
        super().__init__()
        self.stops = stops
        self.ENCOUNTERS = encounters

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
        stop_count = 0
        for stop in self.stops:
            stop_count = (stop == input_ids[0]).sum().item()
        if stop_count >= self.ENCOUNTERS:
            return True
        return False

def build_one_instance(tokenizer, conversation):
    text_list = []
    turn_num = len(conversation)
    input_ids, target_ids = [], []
    for i in range(turn_num):
        turn = conversation[i]
        role = turn['from']
        if i == 0: # the first human turn
            assert role == 'human'
            text = turn['value'] + '\n### Assistant:'
            one_input_id = tokenizer(text, add_special_tokens=False).input_ids
            input_ids += one_input_id
            target_ids += [-100]*len(one_input_id) # do not perform loss regression on human prompt
        else:
            if role == 'human':
                text = 'Human: ' + turn['value'] + '\n### Assistant:'
                one_input_id = tokenizer(text, add_special_tokens=False).input_ids
                input_ids += one_input_id
                target_ids += [-100]*len(one_input_id)
            elif role == 'gpt':
                text = turn['value'] + '\n###'
                one_input_id = tokenizer(text, add_special_tokens=False).input_ids
                input_ids += one_input_id
                target_ids += one_input_id
            else:
                raise Exception('Wrong Role!!!')
        text_list.append(text)
        assert len(input_ids) == len(target_ids)
    return text_list, input_ids, target_ids

def process_batch_instance(tokenizer, batch_of_conversations, max_tgt_len):
    batch_input_ids, batch_target_ids = [], []
    for conversation in batch_of_conversations:
        _, one_input_ids, one_target_ids = build_one_instance(tokenizer, conversation)
        batch_input_ids.append(torch.LongTensor(one_input_ids))
        batch_target_ids.append(torch.LongTensor(one_target_ids))
    input_ids = rnn.pad_sequence(batch_input_ids, batch_first=True, padding_value=tokenizer.pad_token_id)
    target_ids = rnn.pad_sequence(batch_target_ids, batch_first=True, padding_value=-100)
    assert input_ids.size() == target_ids.size()
    input_ids = input_ids[:,:max_tgt_len]
    target_ids = target_ids[:,:max_tgt_len]
    attention_mask = input_ids.ne(tokenizer.pad_token_id)
    assert attention_mask.size() == input_ids.size()
    return input_ids, target_ids, attention_mask.long()

def find_first_file_in_directory(directory_path):
    try:
        file_list = os.listdir(directory_path)
        for item in file_list:
            item_path = os.path.join(directory_path, item)
            if os.path.isfile(item_path):
                return item_path
        return None

    except OSError as e:
        print(f"Error while accessing directory: {e}")
        return None


PROMPT_START = '### Human: <Img>'
class OpenLLAMAPEFTModel(nn.Module):

    '''LoRA for LLaMa model'''

    def __init__(self, **args):
        super(OpenLLAMAPEFTModel, self).__init__()
        self.args = args
        imagebind_ckpt_path = args['imagebind_ckpt_path']
        vicuna_ckpt_path = args['vicuna_ckpt_path']
        max_tgt_len = args['max_tgt_len']
        stage = args['stage']

        self.device = torch.cuda.current_device()

        print (f'Initializing visual encoder from {imagebind_ckpt_path} ...')

        self.visual_encoder, self.visual_hidden_size = imagebind_model.imagebind_huge(args)
        self.visual_encoder.to(self.device)
        imagebind_ckpt = torch.load(imagebind_ckpt_path, map_location=torch.device('cpu'))
        self.visual_encoder.load_state_dict(imagebind_ckpt, strict=True)
        

        self.iter = 0

        self.image_decoder = LinearLayer(1280, 1024, 4).to(self.device)

        self.prompt_learner = PromptLearner(1, 4096).to(self.device)

        self.loss_focal = FocalLoss()
        self.loss_dice = BinaryDiceLoss()


        # free vision encoder
        for name, param in self.visual_encoder.named_parameters():
            param.requires_grad = False
        self.visual_encoder.eval()
        print ('Visual encoder initialized.')

        print (f'Initializing language decoder from {vicuna_ckpt_path} ...')
        
        # add the lora module
        peft_config = LoraConfig(
            task_type=TaskType.CAUSAL_LM, 
            inference_mode=False, 
            r=self.args['lora_r'], 
            lora_alpha=self.args['lora_alpha'], 
            lora_dropout=self.args['lora_dropout'],
            target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj']
        )

        # config = AutoConfig.from_pretrained(vicuna_ckpt_path)
        # with init_empty_weights():
        #     self.llama_model = AutoModelForCausalLM.from_config(config)

        # # device_map = infer_auto_device_map(self.llama_model, no_split_module_classes=["OPTDecoderLayer"], dtype="float16")
        # # print(device_map)
        device_map = {'model.embed_tokens': 0, 'model.layers.0': 0, 'model.layers.1': 0, 'model.layers.2': 0, 'model.layers.3': 0, 'model.layers.4': 0, 'model.layers.5': 0, 'model.layers.6': 0, 'model.layers.7': 0, 'model.layers.8': 0, 'model.layers.9': 0, 'model.layers.10.self_attn': 0, 'model.layers.10.mlp.gate_proj': 0, 'model.layers.10.mlp.down_proj': 'cpu', 'model.layers.10.mlp.up_proj': 'cpu', 'model.layers.10.mlp.act_fn': 'cpu', 'model.layers.10.input_layernorm': 'cpu', 'model.layers.10.post_attention_layernorm': 'cpu', 'model.layers.11': 'cpu', 'model.layers.12': 'cpu', 'model.layers.13': 'cpu', 'model.layers.14': 'cpu', 'model.layers.15': 'cpu', 'model.layers.16': 'cpu', 'model.layers.17': 'cpu', 'model.layers.18': 'cpu', 'model.layers.19': 'cpu', 'model.layers.20': 'cpu', 'model.layers.21': 'cpu', 'model.layers.22': 'cpu', 'model.layers.23': 'cpu', 'model.layers.24': 'disk', 'model.layers.25': 'disk', 'model.layers.26': 'disk', 'model.layers.27': 'disk', 'model.layers.28': 'disk', 'model.layers.29': 'disk', 'model.layers.30': 'disk', 'model.layers.31.self_attn': 'disk', 'model.layers.31.mlp.gate_proj': 'disk', 'model.layers.31.mlp.down_proj': 'disk', 'model.layers.31.mlp.up_proj': 'disk', 'model.layers.31.mlp.act_fn': 'disk', 'model.layers.31.input_layernorm': 'disk', 'model.layers.31.post_attention_layernorm': 'disk', 'model.norm': 'disk', 'lm_head': 'disk'}
        # # self.llama_model = load_checkpoint_and_dispatch(self.llama_model, vicuna_ckpt_path, device_map=device_map, offload_folder="offload", offload_state_dict = True)
        # # self.llama_model.to(torch.float16)
        # # try:
        self.llama_model = AutoModelForCausalLM.from_pretrained("../vicuna_ckpt", torch_dtype=torch.float16, device_map=device_map, offload_folder="offload", offload_state_dict = True)
        # # except:
        #     pass
        # finally:
        #     print(self.llama_model.hf_device_map)
        self.llama_model = get_peft_model(self.llama_model, peft_config)
        self.llama_model.print_trainable_parameters()

        self.llama_tokenizer = LlamaTokenizer.from_pretrained(vicuna_ckpt_path, use_fast=False, torch_dtype=torch.float16, device_map='auto', offload_folder="offload", offload_state_dict = True)
        self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
        self.llama_tokenizer.padding_side = "right"
        print ('Language decoder initialized.')

        self.llama_proj = nn.Linear(
            self.visual_hidden_size, self.llama_model.config.hidden_size
        )

        self.max_tgt_len = max_tgt_len
        


    def rot90_img(self,x,k):
        # k is 0,1,2,3
        degreesarr = [0., 90., 180., 270., 360]
        degrees = torch.tensor(degreesarr[k]).to(self.llama_model.dtype).to(self.device)
        x = K.geometry.transform.rotate(x, angle = degrees, padding_mode='reflection')
        return x

    def encode_video(self, video_paths):
        inputs = {ModalityType.VISION: data.load_and_transform_video_data(video_paths, self.device)}
        # convert into visual dtype
        inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
        with torch.no_grad():
            embeddings = self.visual_encoder(inputs)
            video_embeds = embeddings[ModalityType.VISION][0] # bsz x 1024
        inputs_llama = self.llama_proj(video_embeds).unsqueeze(1) # bsz x 1 x llama_size
        atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
        return inputs_llama, atts_llama

    def encode_audio(self, audio_paths):
        inputs = {ModalityType.AUDIO: data.load_and_transform_audio_data(audio_paths, self.device)}
        # convert into visual dtype
        inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
        with torch.no_grad():
            embeddings = self.visual_encoder(inputs)
            audio_embeds = embeddings[ModalityType.AUDIO][0] # bsz x 1024
        inputs_llama = self.llama_proj(audio_embeds).unsqueeze(1) # bsz x 1 x llama_size
        atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
        return inputs_llama, atts_llama

    def encode_thermal(self, thermal_paths):
        inputs = {ModalityType.THERMAL: data.load_and_transform_thermal_data(thermal_paths, self.device)}
        # convert into visual dtype
        inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
        with torch.no_grad():
            embeddings = self.visual_encoder(inputs)
            image_embeds = embeddings['thermal'][0] # bsz x 1024
        inputs_llama = self.llama_proj(image_embeds).unsqueeze(1) # bsz x 1 x llama_size
        atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
        return inputs_llama, atts_llama

    def encode_image(self, image_paths):
        inputs = {ModalityType.VISION: data.load_and_transform_vision_data(image_paths, self.device)}
        # convert into visual dtype
        inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
        with torch.no_grad():
            embeddings = self.visual_encoder(inputs)
            image_embeds = embeddings['vision'][0] # bsz x 1024
            patch_features = embeddings['vision'][1] # bsz x h*w x 1280
        patch_tokens = self.image_decoder(patch_features) # bsz x h*w x 1024

        inputs_llama = self.llama_proj(image_embeds).unsqueeze(1) # bsz x 1 x llama_size
        atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
        return inputs_llama, atts_llama, patch_tokens
    
    def encode_image_for_web_demo(self, image_paths):
        inputs = {ModalityType.VISION: data.load_and_transform_vision_data_for_web_demo(image_paths, self.device)}
        # convert into visual dtype
        inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
        with torch.no_grad():
            embeddings = self.visual_encoder(inputs)
            image_embeds = embeddings['vision'][0] # bsz x 1024
            patch_features = embeddings['vision'][1] # bsz x h*w x 1280
        patch_tokens = self.image_decoder(patch_features) # bsz x h*w x 1024

        inputs_llama = self.llama_proj(image_embeds).unsqueeze(1) # bsz x 1 x llama_size
        atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
        return inputs_llama, atts_llama, patch_tokens
    
    def encode_image_for_one_shot(self, image_paths):
        inputs = {ModalityType.VISION: data.load_and_transform_vision_data(image_paths, self.device)}
        # convert into visual dtype
        inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
        with torch.no_grad():
            embeddings = self.visual_encoder(inputs)
            patch_features = embeddings['vision'][1] # bsz x h*w x 1280
            for i in range(len(patch_features)):
                patch_features[i] = patch_features[i].transpose(0, 1)[:, 1:, :]

        return patch_features
    
    def encode_image_for_one_shot_from_tensor(self, image_tensors):
        if not isinstance(image_tensors, list):
            image_tensors = [image_tensors]
        inputs = {ModalityType.VISION: torch.stack(image_tensors, dim=0).to(self.device)}
        # convert into visual dtype
        inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
        with torch.no_grad():
            embeddings = self.visual_encoder(inputs)
            patch_features = embeddings['vision'][1] # bsz x h*w x 1280
            for i in range(len(patch_features)):
                patch_features[i] = patch_features[i].transpose(0, 1)[:, 1:, :]

        return patch_features
    
    def encode_image_for_one_shot_with_aug(self, image_paths):
        image_tensors = data.load_and_transform_vision_data(image_paths, self.device).to(self.llama_model.dtype)
        B,C,H,W = image_tensors.shape
        # print(B,C,H,W)

        rotated_images = torch.zeros((4, B, C, H, W)).to(self.llama_model.dtype).to(self.device)


        for j, degree in enumerate([0, 1, 2, 3]):
            rotated_img = self.rot90_img(image_tensors, degree)
            # 存储旋转后的图像
            rotated_images[j] = rotated_img

        image_tensors = rotated_images.transpose(0,1).reshape(B * 4, C, H, W)

        inputs = {ModalityType.VISION: image_tensors}
        # convert into visual dtype
        inputs = {key: inputs[key] for key in inputs}
        with torch.no_grad():
            embeddings = self.visual_encoder(inputs)
            patch_features = embeddings['vision'][1] # bsz x h*w x 1280
            for i in range(len(patch_features)):
                patch_features[i] = patch_features[i].transpose(0, 1)[:, 1:, :].reshape(B,4,256,1280).reshape(B, 4 * 256, 1280)

        return patch_features
    
    def encode_image_from_tensor(self, image_tensors):
        if not isinstance(image_tensors, list):
            image_tensors = [image_tensors]
        inputs = {ModalityType.VISION: torch.stack(image_tensors, dim=0).to(self.device)}
        # convert into visual dtype
        inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
        with torch.no_grad():
            embeddings = self.visual_encoder(inputs)
            image_embeds = embeddings['vision'][0] # bsz x 1024
            patch_features = embeddings['vision'][1] # bsz x h*w x 1024
        patch_tokens = self.image_decoder(patch_features)


        inputs_llama = self.llama_proj(image_embeds).unsqueeze(1) # bsz x 1 x llama_size
        atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
        return inputs_llama, atts_llama, patch_tokens
    
    def encode_image_from_tensor_no_patch(self, image_tensors):
        if not isinstance(image_tensors, list):
            image_tensors = [image_tensors]
        inputs = {ModalityType.VISION: torch.stack(image_tensors, dim=0).to(self.device)}
        # convert into visual dtype
        inputs = {key: inputs[key].to(self.llama_model.dtype) for key in inputs}
        with torch.no_grad():
            embeddings = self.visual_encoder(inputs)
            image_embeds = embeddings['vision'][0] # bsz x 1024

        inputs_llama = self.llama_proj(image_embeds).unsqueeze(1) # bsz x 1 x llama_size
        atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(self.device) # bsz x 1
        return inputs_llama, atts_llama



    def prompt_wrap(self, img_embeds, input_ids, target_ids, attention_mask, anomaly_embedding = None):
        '''
            input_ids, target_ids, attention_mask: bsz x s2
        '''
        input_ids = input_ids.to(self.device) # bsz x s2
        target_ids = target_ids.to(self.device) # bsz x s2
        attention_mask = attention_mask.to(self.device) # bsz x s2

        batch_size = img_embeds.shape[0]
        p_before = PROMPT_START
        p_before_tokens = self.llama_tokenizer(p_before, 
            return_tensors="pt", add_special_tokens=False).to(self.device)
        # peft model need deeper call
        p_before_embeds = self.llama_model.model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s1 x embed_dim

        p_middle = '</Img> '
        p_middle_tokens = self.llama_tokenizer(p_middle, 
            return_tensors="pt", add_special_tokens=False).to(self.device)
        # peft model need deeper call
        p_middle_embeds = self.llama_model.model.model.embed_tokens(p_middle_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s1 x embed_dim


        p_after_embeds = self.llama_model.model.model.embed_tokens(input_ids).expand(batch_size, -1, -1) # bsz x s2 x embed_dim
        bos = torch.ones([batch_size, 1],
                         dtype=p_before_tokens.input_ids.dtype,
                         device=p_before_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id # bsz x 1
        bos_embeds = self.llama_model.model.model.embed_tokens(bos) # bsz x 1 x embed_dim

        

        if anomaly_embedding != None:
            inputs_embeds = torch.cat([bos_embeds, p_before_embeds, img_embeds, p_middle_embeds, anomaly_embedding, p_after_embeds], dim=1) # bsz x (1+s1+1+s2) x embed_dim
            # create targets
            empty_targets = (
                torch.ones([batch_size, 1+p_before_embeds.size()[1]+1+p_middle_embeds.size()[1] + anomaly_embedding.size()[1]], # 1 (bos) + s1 + 1 (image vector)
                        dtype=torch.long).to(self.device).fill_(-100)  
            ) # bsz x (1 + s1 + 1)
            targets = torch.cat([empty_targets, target_ids], dim=1) # bsz x (1 + s1 + 1 + s2)
            assert inputs_embeds.size()[1] == targets.size()[1]

            atts_prefix = torch.ones([batch_size, 1+p_before_embeds.size()[1]+1+p_middle_embeds.size()[1] + anomaly_embedding.size()[1]], dtype=torch.long).to(self.device) # bsz x (1 + s1 +1)
            attention_mask = torch.cat([atts_prefix, attention_mask], dim=1)
            assert attention_mask.size() == targets.size() # bsz x (1 + s1 + 1 + s2)
            return inputs_embeds, targets, attention_mask 
        else:
            inputs_embeds = torch.cat([bos_embeds, p_before_embeds, img_embeds, p_middle_embeds, p_after_embeds], dim=1) # bsz x (1+s1+1+s2) x embed_dim
            # create targets
            empty_targets = (
                torch.ones([batch_size, 1+p_before_embeds.size()[1]+1+p_middle_embeds.size()[1]], # 1 (bos) + s1 + 1 (image vector)
                        dtype=torch.long).to(self.device).fill_(-100)  
            ) # bsz x (1 + s1 + 1)
            targets = torch.cat([empty_targets, target_ids], dim=1) # bsz x (1 + s1 + 1 + s2)
            assert inputs_embeds.size()[1] == targets.size()[1]

            atts_prefix = torch.ones([batch_size, 1+p_before_embeds.size()[1]+1+p_middle_embeds.size()[1]], dtype=torch.long).to(self.device) # bsz x (1 + s1 +1)
            attention_mask = torch.cat([atts_prefix, attention_mask], dim=1)
            assert attention_mask.size() == targets.size() # bsz x (1 + s1 + 1 + s2)
            return inputs_embeds, targets, attention_mask 


    def forward(self, inputs):

        if 'masks' in inputs:

            image_paths = inputs['images']
            img_embeds, _, patch_tokens = self.encode_image_from_tensor(image_paths)
            class_name = inputs['class_names']

            loss_pixel = 0
            feats_text_tensor = encode_text_with_prompt_ensemble(self.visual_encoder, ['object' for _ in class_name], self.device)

            anomaly_maps = []
            for layer in range(len(patch_tokens)):
                patch_tokens[layer] = patch_tokens[layer] / patch_tokens[layer].norm(dim=-1, keepdim=True)
                # print(patch_tokens[layer].shape)
                # anomaly_map = torch.bmm(patch_tokens[layer], feats_text_tensor.transpose(-2,-1))
                anomaly_map = (100.0 * patch_tokens[layer] @ feats_text_tensor.transpose(-2,-1))
                B, L, C = anomaly_map.shape
                H = int(np.sqrt(L))
                anomaly_map = F.interpolate(anomaly_map.permute(0, 2, 1).view(B, 2, H, H),
                                            size=224, mode='bilinear', align_corners=True)
                # anomaly_map_no_softmax = anomaly_map
                anomaly_map = torch.softmax(anomaly_map, dim=1)
                anomaly_maps.append(anomaly_map)
                # anomaly_maps_ns.append(anomaly_map_no_softmax)           

            gt = inputs['masks']
            gt = torch.stack(gt, dim=0).to(self.device)
            gt = gt.squeeze()
            # print(gt.max(), gt.min())
            gt[gt > 0.3], gt[gt <= 0.3] = 1, 0
            

            for num in range(len(anomaly_maps)):
                f_loss = self.loss_focal(anomaly_maps[num], gt)
                d_loss = self.loss_dice(anomaly_maps[num][:, 1, :, :], gt)
                loss_pixel = loss_pixel + f_loss + d_loss

            for num in range(len(anomaly_maps)):
                anomaly_maps[num] = anomaly_maps[num][:,1,:,:]

            anomaly_map_all = torch.mean(torch.stack(anomaly_maps, dim=0), dim=0).unsqueeze(1)
        
            if random.randint(0,1) == 0 and len(inputs['img_paths']) == len(image_paths):

                normal_paths = []
                for path in inputs['img_paths']:
                    normal_path = path.replace('test', 'train')
                    normal_path = find_first_file_in_directory("/".join(normal_path.split('/')[:-2])+'/good')
                    normal_paths.append(normal_path)

                print(normal_paths)
                query_patch_tokens = self.encode_image_for_one_shot_from_tensor(image_paths)
                normal_patch_tokens = self.encode_image_for_one_shot_with_aug(normal_paths)
                sims = []
                B = len(image_paths)

                for i in range(len(query_patch_tokens)):
                    query_patch_tokens_reshaped = query_patch_tokens[i].view(B,256,1,1280)
                    normal_tokens_reshaped = normal_patch_tokens[i].reshape(B,1,-1,1280)
                    cosine_similarity_matrix = F.cosine_similarity(query_patch_tokens_reshaped, normal_tokens_reshaped, dim=-1)
                    sim_max, _ = torch.max(cosine_similarity_matrix, dim=-1)
                    sims.append(sim_max)

                sim = torch.mean(torch.stack(sims,dim=0), dim=0).reshape(B,1,16,16)
                sim = F.interpolate(sim,size=224, mode='bilinear', align_corners=True)
                anomaly_map_all = 1 - sim # (anomaly_map_all + 1 - sim) / 2

            anomaly_map_prompts = self.prompt_learner(anomaly_map_all)

            # img_embeds = img_embeds + anomaly_map_prompts

            output_texts = inputs['texts']
            input_ids, target_ids, attention_mask = process_batch_instance(self.llama_tokenizer, output_texts, self.max_tgt_len)
            inputs_embeds, targets, attention_mask = self.prompt_wrap(img_embeds, input_ids, target_ids, attention_mask, anomaly_map_prompts)

            outputs = self.llama_model(
                inputs_embeds=inputs_embeds,
                attention_mask=attention_mask,
                return_dict=True,
                labels=targets,
            )
            loss = outputs.loss

            # loss_l2 = torch.norm(anomaly_map_prompts / 2 , p=2)
            # loss_l2 = nn.MSELoss()(img_embeds_origin, img_embeds)
            # calculate the token accuarcy
            chosen_tokens = torch.max(outputs.logits, dim=-1)[1][:, 1:-1]    # [B, S-1]
            # print(self.llama_tokenizer.decode(chosen_tokens[0], skip_special_tokens=True))
            labels = targets[:, 2:]
            gen_acc = (chosen_tokens.reshape(-1) == labels.reshape(-1)).to(torch.long)    # [B*S]
            valid_mask = (labels != -100).reshape(-1)
            # print(self.llama_tokenizer.decode(chosen_tokens.reshape(-1)[valid_mask], skip_special_tokens=True))
            valid_tokens = gen_acc & valid_mask    # [B*S]
            gen_acc = valid_tokens.sum().item() / valid_mask.sum().item()

            return loss + loss_pixel, gen_acc
        
        else:
            
            image_paths = inputs['image_paths']
            img_embeds, _, patch_tokens = self.encode_image_from_tensor(image_paths)

            output_texts = inputs['output_texts']

            c_name = 'object'
            for name in CLASS_NAMES:
                if name in output_texts:
                    c_name = name
                    break

            feats_text_tensor = encode_text_with_prompt_ensemble(self.visual_encoder, ['object'] * len(image_paths), self.device)

            anomaly_maps = []
            for layer in range(len(patch_tokens)):
                patch_tokens[layer] = patch_tokens[layer] / patch_tokens[layer].norm(dim=-1, keepdim=True)
                # print(patch_tokens[layer].shape)
                # anomaly_map = torch.bmm(patch_tokens[layer], feats_text_tensor.transpose(-2,-1))
                anomaly_map = (100.0 * patch_tokens[layer] @ feats_text_tensor.transpose(-2,-1))
                B, L, C = anomaly_map.shape
                H = int(np.sqrt(L))
                anomaly_map = F.interpolate(anomaly_map.permute(0, 2, 1).view(B, 2, H, H),
                                            size=224, mode='bilinear', align_corners=True)
                # anomaly_map_no_softmax = anomaly_map
                anomaly_map = torch.softmax(anomaly_map, dim=1)
                anomaly_maps.append(anomaly_map)

            for num in range(len(anomaly_maps)):
                anomaly_maps[num] = anomaly_maps[num][:,1,:,:]

            anomaly_map_all = torch.mean(torch.stack(anomaly_maps, dim=0), dim=0).unsqueeze(1)

            anomaly_map_prompts = self.prompt_learner(anomaly_map_all)

            # img_embeds = img_embeds + anomaly_map_prompts

            input_ids, target_ids, attention_mask = process_batch_instance(self.llama_tokenizer, output_texts, self.max_tgt_len)
            inputs_embeds, targets, attention_mask = self.prompt_wrap(img_embeds, input_ids, target_ids, attention_mask, anomaly_map_prompts)

            outputs = self.llama_model(
                inputs_embeds=inputs_embeds,
                attention_mask=attention_mask,
                return_dict=True,
                labels=targets,
            )
            loss = outputs.loss
            # calculate the token accuarcy
            chosen_tokens = torch.max(outputs.logits, dim=-1)[1][:, 1:-1]    # [B, S-1]
            labels = targets[:, 2:]
            gen_acc = (chosen_tokens.reshape(-1) == labels.reshape(-1)).to(torch.long)    # [B*S]
            valid_mask = (labels != -100).reshape(-1)
            valid_tokens = gen_acc & valid_mask    # [B*S]
            gen_acc = valid_tokens.sum().item() / valid_mask.sum().item()
            
            return loss, gen_acc


    def extract_multimodal_feature(self, inputs, web_demo):
        features = []
        if inputs['image_paths']:
            
            prompt = inputs['prompt']
            c_name = 'object'
            for name in CLASS_NAMES:
                if name in prompt:
                    c_name = name
                    break
                
            if not web_demo:
                image_embeds, _, patch_tokens = self.encode_image(inputs['image_paths'])
                feats_text_tensor = encode_text_with_prompt_ensemble(self.visual_encoder, [c_name], self.device)
            else:
                image_embeds, _, patch_tokens = self.encode_image_for_web_demo(inputs['image_paths'])
                feats_text_tensor = encode_text_with_prompt_ensemble(self.visual_encoder, ['object'], self.device)

            anomaly_maps = []
            for layer in range(len(patch_tokens)):
                patch_tokens[layer] = patch_tokens[layer] / patch_tokens[layer].norm(dim=-1, keepdim=True)
                # print(patch_tokens[layer].shape)
                # anomaly_map = torch.bmm(patch_tokens[layer], feats_text_tensor.transpose(-2,-1))
                anomaly_map = (100.0 * patch_tokens[layer] @ feats_text_tensor.transpose(-2,-1))
                B, L, C = anomaly_map.shape
                H = int(np.sqrt(L))
                anomaly_map = F.interpolate(anomaly_map.permute(0, 2, 1).view(B, 2, H, H),
                                            size=224, mode='bilinear', align_corners=True)
                anomaly_map = torch.softmax(anomaly_map, dim=1)
                anomaly_maps.append(anomaly_map[:,1,:,:])

            anomaly_map_ret = torch.mean(torch.stack(anomaly_maps, dim=0), dim=0).unsqueeze(1)
            # anomaly_map_all = anomaly_map_ret.unsqueeze(1).repeat((1,3,1,1))
            # anomaly_map_feature, _, _ = self.encode_image_from_tensor(anomaly_map_all)
            # image_embeds = anomaly_map_feature + image_embeds
            if inputs['normal_img_paths']:
                query_patch_tokens = self.encode_image_for_one_shot(inputs['image_paths'])
                if 'mvtec' in 'normal_img_paths':
                    normal_patch_tokens = self.encode_image_for_one_shot_with_aug(inputs['normal_img_paths'])
                else:
                    normal_patch_tokens = self.encode_image_for_one_shot(inputs['normal_img_paths'])
                sims = []

                for i in range(len(query_patch_tokens)):
                    query_patch_tokens_reshaped = query_patch_tokens[i].view(256,1,1280)
                    normal_tokens_reshaped = normal_patch_tokens[i].reshape(1,-1,1280)
                    cosine_similarity_matrix = F.cosine_similarity(query_patch_tokens_reshaped, normal_tokens_reshaped, dim=2)
                    sim_max, _ = torch.max(cosine_similarity_matrix, dim=1)
                    sims.append(sim_max)

                sim = torch.mean(torch.stack(sims,dim=0), dim=0).reshape(1,1,16,16)
                sim = F.interpolate(sim,size=224, mode='bilinear', align_corners=True)
                anomaly_map_ret = 1 - sim # (anomaly_map_ret + 1 - sim) / 2
                

            features.append(image_embeds)
        if inputs['audio_paths']:
            audio_embeds, _ = self.encode_audio(inputs['audio_paths'])
            features.append(audio_embeds)
        if inputs['video_paths']:
            video_embeds, _ = self.encode_video(inputs['video_paths'])
            features.append(video_embeds)
        if inputs['thermal_paths']:
            thermal_embeds, _ = self.encode_thermal(inputs['thermal_paths'])
            features.append(thermal_embeds)

        feature_embeds = torch.cat(features).sum(dim=0).unsqueeze(0)
        return feature_embeds, anomaly_map_ret

    def prepare_generation_embedding(self, inputs, web_demo):
        prompt = inputs['prompt']
        # if len(inputs['modality_embeds']) == 1:
        #     feature_embeds = inputs['modality_embeds'][0]
        # else:
        feature_embeds, anomaly_map = self.extract_multimodal_feature(inputs, web_demo)
        # print(anomaly_map.shape)
        inputs['modality_embeds'].append(feature_embeds)

        batch_size = feature_embeds.shape[0]
        p_before = PROMPT_START
        p_before_tokens = self.llama_tokenizer(p_before, 
            return_tensors="pt", add_special_tokens=False).to(self.device)
        p_before_embeds = self.llama_model.model.model.embed_tokens(p_before_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s1 x embed_dim
        
        p_middle = '</Img> '
        p_middle_tokens = self.llama_tokenizer(p_middle, 
            return_tensors="pt", add_special_tokens=False).to(self.device)
        # peft model need deeper call
        p_middle_embeds = self.llama_model.model.model.embed_tokens(p_middle_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s1 x embed_dim

        # self.prompt_learner.eval()
        anomaly_map_prompts = self.prompt_learner(anomaly_map)




        text = prompt + '\n### Assistant:'
        p_after_tokens = self.llama_tokenizer(text, add_special_tokens=False, return_tensors='pt').to(self.device)
        p_after_embeds = self.llama_model.model.model.embed_tokens(p_after_tokens.input_ids).expand(batch_size, -1, -1) # bsz x s2 x embed_dim
        bos = torch.ones([batch_size, 1],
                         dtype=p_before_tokens.input_ids.dtype,
                         device=p_before_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id # bsz x 1
        bos_embeds = self.llama_model.model.model.embed_tokens(bos) # bsz x 1 x embed_dim
        inputs_embeds = torch.cat([bos_embeds, p_before_embeds, feature_embeds, p_middle_embeds, anomaly_map_prompts, p_after_embeds], dim=1) # bsz x (1+s1+1+s2) x embed_dim
    
        return inputs_embeds, anomaly_map

    def generate(self, inputs, web_demo=False):
        '''
            inputs = {
                'image_paths': optional,
                'audio_paths': optional
                'video_paths': optional
                'thermal_paths': optional
                'mode': generation mode,
                'prompt': human input prompt,
                'max_tgt_len': generation length,
                'top_p': top_p,
                'temperature': temperature
                'modality_embeds': None or torch.tensor
                'modality_cache': save the image cache
            }
        '''
        # self.prompt_learner.eval()
        # self.llama_model.eval()
        # self.llama_proj.eval()
        # self.image_decoder.eval()
        # self.llama_tokenizer.eval()
        input_embeds, pixel_output = self.prepare_generation_embedding(inputs, web_demo)
        stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=[2277], encounters=1)])
        outputs = self.llama_model.generate(
            inputs_embeds=input_embeds,
            max_new_tokens=inputs['max_tgt_len'],
            top_p=inputs['top_p'],
            temperature=inputs['temperature'],
            do_sample=True,
            use_cache=True,
            stopping_criteria=stopping_criteria,
        )
        output_text = self.llama_tokenizer.decode(outputs[0][:-2], skip_special_tokens=True)
        return output_text, pixel_output