Spaces:
Sleeping
Sleeping
File size: 7,917 Bytes
a73717c 566370b a73717c 17e2e41 a73717c 9db944c a73717c 7b352a4 a73717c 9db944c a73717c 9db944c a73717c a0cdb5d a73717c 1960e94 ea64d45 1960e94 9db944c 1960e94 a73717c 1960e94 a73717c c09a5e3 a73717c a9dbad7 1960e94 d14d4e3 1960e94 a73717c 9db944c a73717c 9db944c a73717c 9db944c a73717c 17e2e41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import gradio as gr
import mdtex2html
from model.openllama import OpenLLAMAPEFTModel
import torch
from io import BytesIO
from PIL import Image as PILImage
import cv2
import numpy as np
from matplotlib import pyplot as plt
from torchvision import transforms
# init the model
args = {
'model': 'openllama_peft',
'imagebind_ckpt_path': './pretrained_ckpt/imagebind_ckpt/imagebind_huge.pth',
'vicuna_ckpt_path': './pretrained_ckpt/vicuna_ckpt/7b_v0',
'anomalygpt_ckpt_path': './ckpt/train_supervised/pytorch_model.pt',
'delta_ckpt_path': './pretrained_ckpt/pandagpt_ckpt/7b/pytorch_model.pt',
'stage': 2,
'max_tgt_len': 128,
'lora_r': 32,
'lora_alpha': 32,
'lora_dropout': 0.1
}
model = OpenLLAMAPEFTModel(**args)
delta_ckpt = torch.load(args['delta_ckpt_path'], map_location=torch.device('cpu'))
model.load_state_dict(delta_ckpt, strict=False)
delta_ckpt = torch.load(args['anomalygpt_ckpt_path'], map_location=torch.device('cpu'))
model.load_state_dict(delta_ckpt, strict=False)
model = model.eval().to(torch.bfloat16)#.half()#.cuda()
"""Override Chatbot.postprocess"""
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f'<br></code></pre>'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>"+line
text = "".join(lines)
return text
def predict(
input,
image_path,
normal_img_path,
chatbot,
max_length,
top_p,
temperature,
history,
modality_cache,
):
if image_path is None and normal_img_path is None:
return [(input, "There is no input data provided! Please upload your data and start the conversation.")]
else:
print(f'[!] image path: {image_path}\n[!] normal image path: {normal_img_path}\n')
# prepare the prompt
prompt_text = ''
for idx, (q, a) in enumerate(history):
if idx == 0:
prompt_text += f'{q}\n### Assistant: {a}\n###'
else:
prompt_text += f' Human: {q}\n### Assistant: {a}\n###'
if len(history) == 0:
prompt_text += f'{input}'
else:
prompt_text += f' Human: {input}'
response, pixel_output = model.generate({
'prompt': prompt_text,
'image_paths': [image_path] if image_path else [],
'normal_img_paths': [normal_img_path] if normal_img_path else [],
'audio_paths': [],
'video_paths': [],
'thermal_paths': [],
'top_p': top_p,
'temperature': temperature,
'max_tgt_len': max_length,
'modality_embeds': modality_cache
},web_demo=True)
chatbot.append((parse_text(input), parse_text(response)))
history.append((input, response))
plt.imshow(pixel_output.to(torch.float16).reshape(224,224).detach().cpu(), cmap='binary_r')
plt.axis('off')
plt.savefig('output.png',bbox_inches='tight',pad_inches = 0)
target_size = 224
original_width, original_height = PILImage.open(image_path).size
if original_width > original_height:
new_width = target_size
new_height = int(target_size * (original_height / original_width))
else:
new_height = target_size
new_width = int(target_size * (original_width / original_height))
new_image = PILImage.new('L', (target_size, target_size), 255) # 'L' mode for grayscale
paste_x = (target_size - new_width) // 2
paste_y = (target_size - new_height) // 2
pixel_output = PILImage.open('output.png').resize((new_width, new_height), PILImage.LANCZOS)
new_image.paste(pixel_output, (paste_x, paste_y))
new_image.save('output.png')
image = cv2.imread('output.png', cv2.IMREAD_GRAYSCALE)
kernel = np.ones((3, 3), np.uint8)
eroded_image = cv2.erode(image, kernel, iterations=1)
cv2.imwrite('output.png', eroded_image)
output = PILImage.open('output.png').convert('L')
return chatbot, history, modality_cache, output
def reset_user_input():
return gr.update(value='')
def reset_state():
return gr.update(value=''), None, None, [], [], [], PILImage.open('ffffff.png')
examples = ['hazelnut_cut.png','capsule_crack.png','carpet_normal.jpg']
with gr.Blocks() as demo:
gr.HTML("""<h1 align="center">Demo of AnomalyGPT</h1>""")
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
image_path = gr.Image(type="filepath", label="Query Image", value=examples[0])
with gr.Row():
normal_img_path = gr.Image(type="filepath", label="Normal Image (optional)", value=None)
with gr.Row():
gr.Examples(examples=examples, inputs=[image_path])
with gr.Row():
max_length = gr.Slider(0, 512, value=512, step=1.0, label="Max length", interactive=True)
top_p = gr.Slider(0, 1, value=0.01, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0, 1, value=1.0, step=0.01, label="Temperature", interactive=True)
with gr.Column(scale=3):
with gr.Row():
with gr.Column(scale=6):
chatbot = gr.Chatbot().style(height=440)
with gr.Column(scale=4):
# gr.Image(output)
image_output = gr.Image(interactive=False, label="Localization Output", type='pil',value=PILImage.open('ffffff.png'))
with gr.Row():
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=12).style(container=False)
with gr.Row():
with gr.Column(scale=2):
submitBtn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
history = gr.State([])
modality_cache = gr.State([])
submitBtn.click(
predict, [
user_input,
image_path,
normal_img_path,
chatbot,
max_length,
top_p,
temperature,
history,
modality_cache,
], [
chatbot,
history,
modality_cache,
image_output
],
show_progress=True
)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(reset_state, outputs=[
user_input,
image_path,
normal_img_path,
chatbot,
history,
modality_cache,
image_output
], show_progress=True)
demo.queue().launch()
|