File size: 7,917 Bytes
a73717c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
566370b
a73717c
 
 
 
 
17e2e41
a73717c
 
 
 
 
 
 
9db944c
a73717c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b352a4
a73717c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9db944c
a73717c
 
 
 
 
 
 
 
9db944c
a73717c
a0cdb5d
a73717c
 
 
 
 
 
1960e94
ea64d45
1960e94
9db944c
1960e94
 
 
 
a73717c
 
 
 
 
1960e94
a73717c
c09a5e3
a73717c
 
a9dbad7
1960e94
d14d4e3
1960e94
a73717c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9db944c
 
a73717c
 
 
 
 
 
9db944c
a73717c
 
 
 
9db944c
 
a73717c
 
 
17e2e41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import gradio as gr
import mdtex2html
from model.openllama import OpenLLAMAPEFTModel
import torch
from io import BytesIO
from PIL import Image as PILImage
import cv2
import numpy as np
from matplotlib import pyplot as plt
from torchvision import transforms

# init the model
args = {
    'model': 'openllama_peft',
    'imagebind_ckpt_path': './pretrained_ckpt/imagebind_ckpt/imagebind_huge.pth',
    'vicuna_ckpt_path': './pretrained_ckpt/vicuna_ckpt/7b_v0',
    'anomalygpt_ckpt_path': './ckpt/train_supervised/pytorch_model.pt',
    'delta_ckpt_path': './pretrained_ckpt/pandagpt_ckpt/7b/pytorch_model.pt',
    'stage': 2,
    'max_tgt_len': 128,
    'lora_r': 32,
    'lora_alpha': 32,
    'lora_dropout': 0.1
}

model = OpenLLAMAPEFTModel(**args)
delta_ckpt = torch.load(args['delta_ckpt_path'], map_location=torch.device('cpu'))
model.load_state_dict(delta_ckpt, strict=False)
delta_ckpt = torch.load(args['anomalygpt_ckpt_path'], map_location=torch.device('cpu'))
model.load_state_dict(delta_ckpt, strict=False)
model = model.eval().to(torch.bfloat16)#.half()#.cuda()

"""Override Chatbot.postprocess"""
def postprocess(self, y):
    if y is None:
        return []
    for i, (message, response) in enumerate(y):
        y[i] = (
            None if message is None else mdtex2html.convert((message)),
            None if response is None else mdtex2html.convert(response),
        )
    return y


gr.Chatbot.postprocess = postprocess


def parse_text(text):
    """copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split('`')
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f'<br></code></pre>'
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", "\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>"+line
    text = "".join(lines)
    return text


def predict(
    input, 
    image_path, 
    normal_img_path,  
    chatbot, 
    max_length, 
    top_p, 
    temperature, 
    history, 
    modality_cache, 
):
    
    if image_path is None and normal_img_path is None:
        return [(input, "There is no input data provided! Please upload your data and start the conversation.")]
    else:
        print(f'[!] image path: {image_path}\n[!] normal image path: {normal_img_path}\n')

    # prepare the prompt
    prompt_text = ''
    for idx, (q, a) in enumerate(history):
        if idx == 0:
            prompt_text += f'{q}\n### Assistant: {a}\n###'
        else:
            prompt_text += f' Human: {q}\n### Assistant: {a}\n###'
    if len(history) == 0:
        prompt_text += f'{input}'
    else:
        prompt_text += f' Human: {input}'

    response, pixel_output = model.generate({
        'prompt': prompt_text,
        'image_paths': [image_path] if image_path else [],
        'normal_img_paths': [normal_img_path] if normal_img_path else [],
        'audio_paths': [],
        'video_paths': [],
        'thermal_paths': [],
        'top_p': top_p,
        'temperature': temperature,
        'max_tgt_len': max_length,
        'modality_embeds': modality_cache
    },web_demo=True)
    chatbot.append((parse_text(input), parse_text(response)))
    history.append((input, response))


    plt.imshow(pixel_output.to(torch.float16).reshape(224,224).detach().cpu(), cmap='binary_r')
    plt.axis('off')
    plt.savefig('output.png',bbox_inches='tight',pad_inches = 0)

    target_size = 224
    original_width, original_height = PILImage.open(image_path).size
    if original_width > original_height:
        new_width = target_size
        new_height = int(target_size * (original_height / original_width))
    else:
        new_height = target_size
        new_width = int(target_size * (original_width / original_height))

    new_image = PILImage.new('L', (target_size, target_size), 255)  # 'L' mode for grayscale

    paste_x = (target_size - new_width) // 2
    paste_y = (target_size - new_height) // 2

    pixel_output = PILImage.open('output.png').resize((new_width, new_height), PILImage.LANCZOS)

    new_image.paste(pixel_output, (paste_x, paste_y))

    new_image.save('output.png')

    image = cv2.imread('output.png', cv2.IMREAD_GRAYSCALE)
    kernel = np.ones((3, 3), np.uint8)
    eroded_image = cv2.erode(image, kernel, iterations=1)
    cv2.imwrite('output.png', eroded_image)

    output =  PILImage.open('output.png').convert('L')


    return chatbot, history, modality_cache, output



def reset_user_input():
    return gr.update(value='')


def reset_state():
    return gr.update(value=''), None, None, [], [], [], PILImage.open('ffffff.png')

examples = ['hazelnut_cut.png','capsule_crack.png','carpet_normal.jpg']

with gr.Blocks() as demo:
    gr.HTML("""<h1 align="center">Demo of AnomalyGPT</h1>""")

    with gr.Row():
        with gr.Column(scale=1):
            with gr.Row():
                image_path = gr.Image(type="filepath", label="Query Image", value=examples[0])
            with gr.Row():
                normal_img_path = gr.Image(type="filepath", label="Normal Image (optional)", value=None)
            with gr.Row():
                gr.Examples(examples=examples, inputs=[image_path])
            with gr.Row():
                max_length = gr.Slider(0, 512, value=512, step=1.0, label="Max length", interactive=True)
                top_p = gr.Slider(0, 1, value=0.01, step=0.01, label="Top P", interactive=True)
                temperature = gr.Slider(0, 1, value=1.0, step=0.01, label="Temperature", interactive=True)


        with gr.Column(scale=3):
            with gr.Row():
                with gr.Column(scale=6):
                    chatbot = gr.Chatbot().style(height=440)
                with gr.Column(scale=4):
                    # gr.Image(output)
                    image_output = gr.Image(interactive=False, label="Localization Output", type='pil',value=PILImage.open('ffffff.png'))
            with gr.Row():
                user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=12).style(container=False)
            with gr.Row():
                with gr.Column(scale=2):
                    submitBtn = gr.Button("Submit", variant="primary")
                with gr.Column(scale=1):
                    emptyBtn = gr.Button("Clear History")
                    
    history = gr.State([])
    modality_cache = gr.State([])

    submitBtn.click(
        predict, [
            user_input, 
            image_path, 
            normal_img_path, 
            chatbot, 
            max_length, 
            top_p, 
            temperature, 
            history, 
            modality_cache,
        ], [
            chatbot, 
            history,
            modality_cache,
            image_output
        ],
        show_progress=True
    )

    submitBtn.click(reset_user_input, [], [user_input])
    emptyBtn.click(reset_state, outputs=[
        user_input,
        image_path,
        normal_img_path,
        chatbot, 
        history, 
        modality_cache,
        image_output
    ], show_progress=True)


demo.queue().launch()