import streamlit as st from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM from diffusers import StableDiffusionPipeline, AutoencoderKL from torchvision import models tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-350M-multi") model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen-350M-multi") pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") video_model = models.resnet50(pretrained=True) st.title("FallnAI Inference App") st.subheader("Coding Model") user_input = st.text_input("Enter your code:") if st.button("Generate"): result = pipeline("text-generation", model=model, tokenizer=tokenizer)(user_input) st.write(result[0]['generated_text']) st.subheader("Stable Diffusion Model") prompt = st.text_input("Enter your prompt:") if st.button("Generate"): image = pipe(prompt).images[0] st.image(image) st.subheader("Video Model") video_file = st.file_uploader("Upload a video file:", type=["mp4", "avi"]) if video_file is not None: video_bytes = video_file.getvalue() st.video(video_bytes) video_transformed = video_model(video_bytes)