Spaces:
Sleeping
Sleeping
# app.py | |
import streamlit as st | |
import torch | |
from diffusers import DiffusionPipeline | |
from PIL import Image | |
# Set up the Streamlit app | |
st.set_page_config(page_title="Huggingface Diffusers Showcase", page_icon=":guardsman:", layout="wide") | |
# Add a sidebar | |
st.sidebar.title("Navigation") | |
st.sidebar.markdown("## Choose a Model") | |
model_options = ["stable-diffusion", "ddim", "ddpm"] | |
selected_model = st.sidebar.selectbox("Select a model", model_options) | |
# Load the selected model | |
if selected_model == "stable-diffusion": | |
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-512-v2") | |
elif selected_model == "ddim": | |
pipe = DiffusionPipeline.from_pretrained("CompVis/ddim-512-fp16") | |
else: | |
pipe = DiffusionPipeline.from_pretrained("CompVis/ddpm-512-fp16") | |
# Add a text input for the user to enter a prompt | |
prompt = st.text_input("Enter a text prompt:", "A sunset over a mountain") | |
# Add a button to generate the image | |
if st.button("Generate Image"): | |
# Generate the image | |
image = pipe(prompt, num_inference_steps=50).images[0] | |
# Display the generated image | |
col1, col2 = st.columns(2) | |
with col1: | |
st.subheader("Prompt") | |
st.markdown(prompt) | |
with col2: | |
st.subheader("Generated Image") | |
st.image(image, caption="Generated using the selected diffusion model.", use_column_width=True) | |
# Add a section for the app info | |
st.sidebar.markdown("---") | |
st.sidebar.markdown("## App Info") | |
st.sidebar.markdown("This app showcases the Huggingface Diffusers library and its features.") | |
st.sidebar.markdown("You can select a model from the sidebar and enter a text prompt to generate an image.") | |
st.sidebar.markdown("Visit the [Huggingface Diffusers documentation](https://huggingface.co/docs/diffusers) for more information.") |