Spaces:
Sleeping
Sleeping
File size: 1,787 Bytes
dc36510 1e1a521 2a88011 dc36510 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
# app.py
import streamlit as st
import torch
from diffusers import DiffusionPipeline
from PIL import Image
# Set up the Streamlit app
st.set_page_config(page_title="Huggingface Diffusers Showcase", page_icon=":guardsman:", layout="wide")
# Add a sidebar
st.sidebar.title("Navigation")
st.sidebar.markdown("## Choose a Model")
model_options = ["stable-diffusion", "ddim", "ddpm"]
selected_model = st.sidebar.selectbox("Select a model", model_options)
# Load the selected model
if selected_model == "stable-diffusion":
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-512-v2")
elif selected_model == "ddim":
pipe = DiffusionPipeline.from_pretrained("CompVis/ddim-512-fp16")
else:
pipe = DiffusionPipeline.from_pretrained("CompVis/ddpm-512-fp16")
# Add a text input for the user to enter a prompt
prompt = st.text_input("Enter a text prompt:", "A sunset over a mountain")
# Add a button to generate the image
if st.button("Generate Image"):
# Generate the image
image = pipe(prompt, num_inference_steps=50).images[0]
# Display the generated image
col1, col2 = st.columns(2)
with col1:
st.subheader("Prompt")
st.markdown(prompt)
with col2:
st.subheader("Generated Image")
st.image(image, caption="Generated using the selected diffusion model.", use_column_width=True)
# Add a section for the app info
st.sidebar.markdown("---")
st.sidebar.markdown("## App Info")
st.sidebar.markdown("This app showcases the Huggingface Diffusers library and its features.")
st.sidebar.markdown("You can select a model from the sidebar and enter a text prompt to generate an image.")
st.sidebar.markdown("Visit the [Huggingface Diffusers documentation](https://huggingface.co/docs/diffusers) for more information.") |