Spaces:
Runtime error
Runtime error
import gradio as gr | |
import spaces | |
import os | |
import spaces | |
import torch | |
import random | |
import time | |
import re | |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, TextStreamer | |
import transformers | |
# Set an environment variable | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
zero = torch.Tensor([0]).cuda() | |
print(zero.device) # <-- 'cpu' 🤔 | |
model_id = 'FINGU-AI/Qwen-Orpo-v1' #attn_implementation="flash_attention_2", | |
model = AutoModelForCausalLM.from_pretrained(model_id,attn_implementation="sdpa", torch_dtype= torch.bfloat16) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
# streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) | |
model.to('cuda') | |
# terminators = [ | |
# tokenizer.eos_token_id, | |
# tokenizer.convert_tokens_to_ids("<|eot_id|>") | |
# ] | |
generation_params = { | |
'max_new_tokens': 1000, | |
'use_cache': True, | |
'do_sample': True, | |
'temperature': 0.7, | |
'top_p': 0.9, | |
# 'top_k': 50, | |
} | |
def inference(query): | |
messages = [ | |
{"role": "system", "content": """You are ai trader, invester helpfull assistant."""}, | |
{"role": "user", "content": f"{query}"}, | |
] | |
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda") | |
outputs = model.generate(tokenized_chat, **generation_params) | |
decoded_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=False) | |
assistant_response = decoded_outputs[0].split("<|im_start|>assistant\n")[-1].strip() | |
response_ = assistant_response.replace('<|im_end|>', "") | |
return response_ | |
# outputs = model.generate(tokenized_chat, **generation_params, streamer=streamer) | |
# return outputs | |
examples = ['How can options strategies such as straddles, strangles, and spreads be used to hedge against market volatility?', | |
'How do changes in interest rates, inflation, and GDP growth impact stock and bond markets?', | |
'What are the key components and strategies involved in developing an effective algorithmic trading system?', | |
'How can investors integrate environmental, social, and governance (ESG) factors into their investment decisions to achieve both financial returns and social impact?', | |
'How do geopolitical events such as trade wars, political instability, and international conflicts affect global financial markets?', | |
'How does blockchain technology have the potential to disrupt financial markets and investment practices?'] | |
def response(message, history): | |
text = inference(message) | |
return text | |
# for i in range(len(text)): | |
# time.sleep(0.01) | |
# yield text[: i + 1] | |
gr.ChatInterface(response,examples=examples).launch() |