Spaces:
Running
Running
Ezi Ozoani
commited on
Commit
β’
f6b562f
1
Parent(s):
3ffe470
possible how to location move
Browse files- .DS_Store +0 -0
- app.py +54 -7
- assets/.DS_Store +0 -0
- assets/hugging_face_earth.png +0 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
app.py
CHANGED
@@ -95,7 +95,7 @@ were utilized to estimate the carbon impact.*
|
|
95 |
st.warning('This is a warning')
|
96 |
# Object notation
|
97 |
st.subheader('π²')
|
98 |
-
with st.expander("π
|
99 |
st.markdown('''
|
100 |
|
101 |
- **Hardware Type:** 8 16GB V100
|
@@ -278,16 +278,63 @@ GPT-2 reaches a perplexity on the test set of 16.3 compared to 21.1 for DistilGP
|
|
278 |
|
279 |
# Try App
|
280 |
|
281 |
-
col2.
|
282 |
-
col2.code('''[To:do add
|
283 |
''')
|
284 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
# Visuals
|
286 |
|
287 |
-
|
288 |
-
|
289 |
-
[temp]
|
290 |
-
''')
|
291 |
|
292 |
|
293 |
|
|
|
95 |
st.warning('This is a warning')
|
96 |
# Object notation
|
97 |
st.subheader('π²')
|
98 |
+
with st.expander("π"):
|
99 |
st.markdown('''
|
100 |
|
101 |
- **Hardware Type:** 8 16GB V100
|
|
|
278 |
|
279 |
# Try App
|
280 |
|
281 |
+
col2.header('Try App')
|
282 |
+
col2.code('''[To:do add integration with HF
|
283 |
''')
|
284 |
|
285 |
+
# How to Get Started
|
286 |
+
|
287 |
+
with col2.header('How to Get Started'):
|
288 |
+
col2.markdown('''
|
289 |
+
*Be sure to read the sections on in-scope and out-of-scope uses and limitations of the model for further information on how to use the model.*
|
290 |
+
''')
|
291 |
+
with col2.expander(""):
|
292 |
+
st.markdown('''
|
293 |
+
|
294 |
+
Using DistilGPT2 is similar to using GPT-2. DistilGPT2 can be used directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility:
|
295 |
+
|
296 |
+
```python
|
297 |
+
>>> from transformers import pipeline, set_seed
|
298 |
+
>>> generator = pipeline('text-generation', model='distilgpt2')
|
299 |
+
>>> set_seed(42)
|
300 |
+
>>> generator("Hello, I'm a language model", max_length=20, num_return_sequences=5)
|
301 |
+
Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.
|
302 |
+
[{'generated_text': "Hello, I'm a language model, I'm a language model. In my previous post I've"},
|
303 |
+
{'generated_text': "Hello, I'm a language model, and I'd love to hear what you think about it."},
|
304 |
+
{'generated_text': "Hello, I'm a language model, but I don't get much of a connection anymore, so"},
|
305 |
+
{'generated_text': "Hello, I'm a language model, a functional language... It's not an example, and that"},
|
306 |
+
{'generated_text': "Hello, I'm a language model, not an object model.\n\nIn a nutshell, I"}]
|
307 |
+
```
|
308 |
+
|
309 |
+
|
310 |
+
**Here is how to use this model to get the features of a given text in PyTorch**:
|
311 |
+
|
312 |
+
```python
|
313 |
+
from transformers import GPT2Tokenizer, GPT2Model
|
314 |
+
tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
315 |
+
model = GPT2Model.from_pretrained('distilgpt2')
|
316 |
+
text = "Replace me by any text you'd like."
|
317 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
318 |
+
output = model(**encoded_input)
|
319 |
+
```
|
320 |
+
|
321 |
+
**And in TensorFlow:**
|
322 |
+
|
323 |
+
```python
|
324 |
+
from transformers import GPT2Tokenizer, TFGPT2Model
|
325 |
+
tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
326 |
+
model = TFGPT2Model.from_pretrained('distilgpt2')
|
327 |
+
text = "Replace me by any text you'd like."
|
328 |
+
encoded_input = tokenizer(text, return_tensors='tf')
|
329 |
+
output = model(encoded_input)
|
330 |
+
```
|
331 |
+
|
332 |
+
''')
|
333 |
+
|
334 |
# Visuals
|
335 |
|
336 |
+
|
337 |
+
|
|
|
|
|
338 |
|
339 |
|
340 |
|
assets/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
assets/hugging_face_earth.png
ADDED