import gradio as gr import numpy as np import os import datetime import torch import soundfile from wavmark.utils import file_reader import wavmark def my_read_file(audio_path, max_second, default_sr=16000): signal, sr, audio_length_second = file_reader.read_as_single_channel_16k(audio_path, default_sr) if audio_length_second > max_second: signal = signal[0:default_sr * max_second] audio_length_second = max_second return signal, sr, audio_length_second def add_watermark(audio_path, watermark_text, max_second_encode=60): assert len(watermark_text) == 16 watermark_npy = np.array([int(i) for i in watermark_text]) signal, sr, audio_length_second = my_read_file(audio_path, max_second_encode) watermarked_signal, _ = wavmark.encode_watermark(model, signal, watermark_npy, show_progress=False) tmp_file_name = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + "_" + watermark_text + ".wav" tmp_file_path = '/tmp/' + tmp_file_name soundfile.write(tmp_file_path, watermarked_signal, sr) return tmp_file_path def decode_watermark(audio_path, max_second_decode=30): assert os.path.exists(audio_path) signal, sr, audio_length_second = my_read_file(audio_path, max_second_decode) payload_decoded, _ = wavmark.decode_watermark(model, signal, show_progress=False) if payload_decoded is None: return "No Watermark" return "".join([str(i) for i in payload_decoded]) def create_default_value(len_start_bit=16): def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit) return "".join([str(i) for i in def_val_npy]) def main(): with gr.Blocks() as demo: with gr.Row(): gr.Markdown("# Audio WaterMarking") with gr.Row(): gr.Markdown("You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio. See [WaveMark toolkit](https://github.com/wavmark/wavmark) for further details.") with gr.Row(): audio_file = gr.Audio(label="Upload Audio", type="filepath") action = gr.Radio(["Add Watermark", "Decode Watermark"], label="Select Action") watermark_text = gr.Textbox(label="The watermark (0, 1 list of length-16):", value=create_default_value()) submit_button = gr.Button("Submit") with gr.Row(): output = gr.Audio(label="Processed Audio") decode_output = gr.Textbox(label="Decoded Watermark") def process_audio(audio_file, action, watermark_text): if action == "Add Watermark" and audio_file: return add_watermark(audio_file, watermark_text), None elif action == "Decode Watermark" and audio_file: return None, decode_watermark(audio_file) else: return None, None submit_button.click(process_audio, inputs=[audio_file, action, watermark_text], outputs=[output, decode_output]) demo.launch() if __name__ == "__main__": default_sr = 16000 max_second_encode = 60 max_second_decode = 30 len_start_bit = 16 device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') model = wavmark.load_model().to(device) main()