File size: 3,247 Bytes
b2bc277
 
baa733f
 
b2bc277
baa733f
 
b2bc277
baa733f
b2bc277
baa733f
 
 
 
 
 
b2bc277
baa733f
 
 
 
 
 
 
 
 
b2bc277
baa733f
 
 
 
b2bc277
 
baa733f
b2bc277
 
 
baa733f
 
b2bc277
 
 
 
 
baa733f
b2bc277
 
 
 
 
baa733f
b2bc277
 
 
d6e6e14
b2bc277
 
 
 
 
 
 
baa733f
b2bc277
baa733f
b2bc277
baa733f
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import gradio as gr
import numpy as np
import os
import datetime
import torch
import soundfile
from wavmark.utils import file_reader
import wavmark

def my_read_file(audio_path, max_second, default_sr=16000):
    signal, sr, audio_length_second = file_reader.read_as_single_channel_16k(audio_path, default_sr)
    if audio_length_second > max_second:
        signal = signal[0:default_sr * max_second]
        audio_length_second = max_second
    return signal, sr, audio_length_second

def add_watermark(audio_path, watermark_text, max_second_encode=60):
    assert len(watermark_text) == 16
    watermark_npy = np.array([int(i) for i in watermark_text])
    signal, sr, audio_length_second = my_read_file(audio_path, max_second_encode)
    watermarked_signal, _ = wavmark.encode_watermark(model, signal, watermark_npy, show_progress=False)
    tmp_file_name = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + "_" + watermark_text + ".wav"
    tmp_file_path = '/tmp/' + tmp_file_name
    soundfile.write(tmp_file_path, watermarked_signal, sr)
    return tmp_file_path

def decode_watermark(audio_path, max_second_decode=30):
    assert os.path.exists(audio_path)
    signal, sr, audio_length_second = my_read_file(audio_path, max_second_decode)
    payload_decoded, _ = wavmark.decode_watermark(model, signal, show_progress=False)
    if payload_decoded is None:
        return "No Watermark"
    return "".join([str(i) for i in payload_decoded])

def create_default_value(len_start_bit=16):
    def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit)
    return "".join([str(i) for i in def_val_npy])

def main():
    with gr.Blocks() as demo:
        with gr.Row():
            gr.Markdown("# Audio WaterMarking")
        with gr.Row():
            gr.Markdown("You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio. See [WaveMark toolkit](https://github.com/wavmark/wavmark) for further details.")
        
        with gr.Row():
            audio_file = gr.Audio(label="Upload Audio", type="filepath")
            action = gr.Radio(["Add Watermark", "Decode Watermark"], label="Select Action")
            watermark_text = gr.Textbox(label="The watermark (0, 1 list of length-16):", value=create_default_value())
            submit_button = gr.Button("Submit")

        with gr.Row():
            output = gr.Audio(label="Processed Audio")
            decode_output = gr.Textbox(label="Decoded Watermark")

        def process_audio(audio_file, action, watermark_text):
            if action == "Add Watermark" and audio_file:
                return add_watermark(audio_file, watermark_text), None
            elif action == "Decode Watermark" and audio_file:
                return None, decode_watermark(audio_file)
            else:
                return None, None

        submit_button.click(process_audio, inputs=[audio_file, action, watermark_text], outputs=[output, decode_output])

    demo.launch()

if __name__ == "__main__":
    default_sr = 16000
    max_second_encode = 60
    max_second_decode = 30
    len_start_bit = 16
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    model = wavmark.load_model().to(device)
    main()