import os from dotenv import load_dotenv from transformers import TFBertForSequenceClassification, BertTokenizerFast # Load environment variables from .env file load_dotenv() def load_model(model_name): try: # Load TensorFlow model from Hugging Face model = TFBertForSequenceClassification.from_pretrained(model_name, use_auth_token=os.getenv('API_KEY'), from_tf=True) except OSError: raise ValueError("Model loading failed.") return model def load_tokenizer(model_name): tokenizer = BertTokenizerFast.from_pretrained(model_name, use_auth_token=os.getenv('API_KEY') return tokenizer def predict(text, model, tokenizer): inputs = tokenizer(text, return_tensors="tf") outputs = model(**inputs) return outputs def main(): model_name = os.getenv('Erfan11/Neuracraft') if model_name is None: raise ValueError("MODEL_PATH environment variable not set or is None") model = load_model(model_name) tokenizer = load_tokenizer(model_name) # Example prediction text = "Sample input text" result = predict(text, model, tokenizer) print(result) if __name__ == "__main__": main()