Spaces:
Sleeping
Sleeping
File size: 931 Bytes
c582cf1 732d546 c582cf1 ff60146 c582cf1 c906021 c582cf1 e25cd92 c582cf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
import streamlit as st
from transformers import GPT2LMHeadModel, GPT2Tokenizer
# Load pre-trained model and tokenizer
model_name = "gpt2"
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
def generate_text(prompt, max_length=50):
# Encode the input prompt
inputs = tokenizer.encode(prompt, return_tensors="pt")
# Generate text
outputs = model.generate(inputs, max_length=max_length, num_return_sequences=1)
# Decode the generated text
text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return text
# Streamlit app
st.title("GPT-2 Text Generator")
prompt = st.text_area("Input", "Once upon a time...")
max_length = st.slider("Max Length", min_value=10, max_value=100, value=50)
if st.button("Generate"):
generated_text = generate_text(prompt, max_length)
st.subheader("Generated Text")
st.write(generated_text) |