File size: 1,300 Bytes
dc480fb
 
732d546
dc480fb
 
043a657
3e04185
dc480fb
da70a87
3e04185
dc480fb
732d546
dc480fb
3e04185
dc480fb
 
 
 
732d546
dc480fb
 
 
3e04185
043a657
83ed8ca
da70a87
dc480fb
 
da70a87
 
dc480fb
 
 
732d546
dc480fb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import os
from transformers import TFBertForSequenceClassification, BertTokenizerFast

def load_model(model_name):
    try:
        # Load TensorFlow model from Hugging Face
        model = TFBertForSequenceClassification.from_pretrained(model_name, use_auth_token=os.getenv('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'))
    except OSError:
        # Fallback to PyTorch model if TensorFlow fails
        model = TFBertForSequenceClassification.from_pretrained(model_name, use_auth_token=os.getenv('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'), from_pt=True)
    return model

def load_tokenizer(model_name):
    tokenizer = BertTokenizerFast.from_pretrained(model_name, use_auth_token=os.getenv('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'))
    return tokenizer

def predict(text, model, tokenizer):
    inputs = tokenizer(text, return_tensors="tf")
    outputs = model(**inputs)
    return outputs

def main():
    model_name = os.getenv('Erfan11/Neuracraft')
    if model_name is None:
        raise ValueError("Erfan11/Neuracraft environment variable not set or is None")

    model = load_model(model_name)
    tokenizer = load_tokenizer(model_name)

    # Example prediction
    text = "Sample input text"
    result = predict(text, model, tokenizer)
    print(result)

if __name__ == "__main__":
    main()