Spaces:
Sleeping
Sleeping
File size: 1,007 Bytes
9a6b849 4eaf7ce 9a6b849 4eaf7ce 5268f3d 9a6b849 4eaf7ce b58127a 4eaf7ce b58127a 9a6b849 b58127a 4eaf7ce 9a6b849 4eaf7ce 9a6b849 b58127a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import os
from dotenv import load_dotenv
from transformers import TFBertForSequenceClassification, BertTokenizerFast
import tensorflow as tf
# Directly specify model and API key
MODEL_NAME = "Erfan11/Neuracraft"
API_KEY = "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"
def load_model(model_name):
# Load the TensorFlow model from Hugging Face Hub
model = TFBertForSequenceClassification.from_pretrained(model_name, use_auth_token=API_KEY)
return model
def load_tokenizer(model_name):
tokenizer = BertTokenizerFast.from_pretrained(model_name, use_auth_token=API_KEY)
return tokenizer
def predict(text, model, tokenizer):
inputs = tokenizer(text, return_tensors="tf")
outputs = model(**inputs)
return outputs
def main():
model_name = MODEL_NAME
model = load_model(model_name)
tokenizer = load_tokenizer(model_name)
# Example usage
text = "Sample input text"
result = predict(text, model, tokenizer)
print(result)
if __name__ == "__main__":
main() |