import logging import math import time import base64 import io import os from typing import Dict, Any from functools import wraps from fastapi import FastAPI, Depends, HTTPException, File, UploadFile from fastapi.encoders import jsonable_encoder from pydantic import BaseModel import jax.numpy as jnp import numpy as np from transformers.pipelines.audio_utils import ffmpeg_read from whisper_jax import FlaxWhisperPipline app = FastAPI(title="Whisper JAX: The Fastest Whisper API ⚡️") logger = logging.getLogger("whisper-jax-app") logger.setLevel(logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) formatter = logging.Formatter("%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S") ch.setFormatter(formatter) logger.addHandler(ch) checkpoint = "openai/whisper-large-v3" BATCH_SIZE = 32 CHUNK_LENGTH_S = 30 NUM_PROC = 32 FILE_LIMIT_MB = 10000 pipeline = FlaxWhisperPipline(checkpoint, dtype=jnp.bfloat16, batch_size=BATCH_SIZE) stride_length_s = CHUNK_LENGTH_S / 6 chunk_len = round(CHUNK_LENGTH_S * pipeline.feature_extractor.sampling_rate) stride_left = stride_right = round(stride_length_s * pipeline.feature_extractor.sampling_rate) step = chunk_len - stride_left - stride_right # do a pre-compile step so that the first user to use the demo isn't hit with a long transcription time logger.debug("Compiling forward call...") start = time.time() random_inputs = { "input_features": np.ones( (BATCH_SIZE, pipeline.model.config.num_mel_bins, 2 * pipeline.model.config.max_source_positions) ) } random_timestamps = pipeline.forward(random_inputs, batch_size=BATCH_SIZE, return_timestamps=True) compile_time = time.time() - start logger.debug(f"Compiled in {compile_time}s") class TranscribeAudioRequest(BaseModel): audio_base64: str = None task: str = "transcribe" return_timestamps: bool = False def timeit(func): @wraps(func) async def wrapper(*args, **kwargs): start_time = time.time() result = await func(*args, **kwargs) end_time = time.time() execution_time = end_time - start_time if isinstance(result, dict): result['total_execution_time'] = execution_time else: result = {'result': result, 'total_execution_time': execution_time} return result return wrapper def check_api_key(): api_key = os.environ.get("WHISPER_API_KEY") if not api_key: raise HTTPException(status_code=401, detail="API key not found in environment variables") return api_key @app.post("/transcribe_audio") @timeit async def transcribe_chunked_audio( request: TranscribeAudioRequest = None, file: UploadFile = File(None), api_key: str = Depends(check_api_key) ) -> Dict[str, Any]: logger.debug("Starting transcribe_chunked_audio function") logger.debug(f"Received parameters - task: {request.task if request else 'transcribe'}, return_timestamps: {request.return_timestamps if request else False}") try: if file: logger.debug("Processing uploaded file") audio_data = await file.read() file_size = len(audio_data) elif request and request.audio_base64: logger.debug("Processing base64 encoded audio") audio_data = base64.b64decode(request.audio_base64) file_size = len(audio_data) else: raise HTTPException(status_code=400, detail="No audio data provided") file_size_mb = file_size / (1024 * 1024) logger.debug(f"Audio data size: {file_size} bytes ({file_size_mb:.2f}MB)") except Exception as e: logger.error(f"Error processing audio data: {str(e)}", exc_info=True) raise HTTPException(status_code=400, detail=f"Error processing audio data: {str(e)}") if file_size_mb > FILE_LIMIT_MB: logger.warning(f"Max file size exceeded: {file_size_mb:.2f}MB > {FILE_LIMIT_MB}MB") raise HTTPException(status_code=400, detail=f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.") try: logger.debug("Performing ffmpeg read on audio data") inputs = ffmpeg_read(audio_data, pipeline.feature_extractor.sampling_rate) inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate} logger.debug("ffmpeg read completed successfully") except Exception as e: logger.error(f"Error in ffmpeg read: {str(e)}", exc_info=True) raise HTTPException(status_code=500, detail=f"Error processing audio data: {str(e)}") logger.debug("Calling tqdm_generate to transcribe audio") try: task = request.task if request else "transcribe" return_timestamps = request.return_timestamps if request else False text, runtime, timing_info = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps) logger.debug(f"Transcription completed. Runtime: {runtime:.2f}s") except Exception as e: logger.error(f"Error in tqdm_generate: {str(e)}", exc_info=True) raise HTTPException(status_code=500, detail=f"Error transcribing audio: {str(e)}") logger.debug("Transcribe_chunked_audio function completed successfully") return jsonable_encoder({ "text": text, "runtime": runtime, "timing_info": timing_info }) def tqdm_generate(inputs: dict, task: str, return_timestamps: bool): start_time = time.time() logger.debug(f"Starting tqdm_generate - task: {task}, return_timestamps: {return_timestamps}") inputs_len = inputs["array"].shape[0] logger.debug(f"Input array length: {inputs_len}") all_chunk_start_idx = np.arange(0, inputs_len, step) num_samples = len(all_chunk_start_idx) num_batches = math.ceil(num_samples / BATCH_SIZE) logger.debug(f"Number of samples: {num_samples}, Number of batches: {num_batches}") logger.debug("Preprocessing audio for inference") try: dataloader = pipeline.preprocess_batch(inputs, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE) logger.debug("Preprocessing completed successfully") except Exception as e: logger.error(f"Error in preprocessing: {str(e)}", exc_info=True) raise model_outputs = [] transcription_start_time = time.time() logger.debug("Starting transcription...") try: for i, batch in enumerate(dataloader): logger.debug(f"Processing batch {i+1}/{num_batches} with {len(batch)} samples") batch_output = pipeline.forward(batch, batch_size=BATCH_SIZE, task=task, return_timestamps=True) model_outputs.append(batch_output) logger.debug(f"Batch {i+1} processed successfully") except Exception as e: logger.error(f"Error during batch processing: {str(e)}", exc_info=True) raise transcription_runtime = time.time() - transcription_start_time logger.debug(f"Transcription completed in {transcription_runtime:.2f}s") logger.debug("Post-processing transcription results") try: post_processed = pipeline.postprocess(model_outputs, return_timestamps=True) logger.debug("Post-processing completed successfully") except Exception as e: logger.error(f"Error in post-processing: {str(e)}", exc_info=True) raise text = post_processed["text"] if return_timestamps: timestamps = post_processed.get("chunks") timestamps = [ f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}" for chunk in timestamps ] text = "\n".join(str(feature) for feature in timestamps) total_processing_time = time.time() - start_time logger.debug("tqdm_generate function completed successfully") return text, transcription_runtime, { "transcription_time": transcription_runtime, "total_processing_time": total_processing_time } def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."): if seconds is not None: milliseconds = round(seconds * 1000.0) hours = milliseconds // 3_600_000 milliseconds -= hours * 3_600_000 minutes = milliseconds // 60_000 milliseconds -= minutes * 60_000 seconds = milliseconds // 1_000 milliseconds -= seconds * 1_000 hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else "" return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}" else: # we have a malformed timestamp so just return it as is return seconds