|
import logging |
|
import math |
|
import time |
|
import base64 |
|
import os |
|
from typing import Dict, Any |
|
from functools import wraps |
|
|
|
from fastapi import FastAPI, Depends, HTTPException, File, UploadFile, Form, Header |
|
from fastapi.encoders import jsonable_encoder |
|
from pydantic import BaseModel |
|
import jax.numpy as jnp |
|
import numpy as np |
|
from transformers.pipelines.audio_utils import ffmpeg_read |
|
from whisper_jax import FlaxWhisperPipline |
|
|
|
app = FastAPI(title="Whisper JAX: The Fastest Whisper API ⚡️") |
|
|
|
logger = logging.getLogger("whisper-jax-app") |
|
logger.setLevel(logging.DEBUG) |
|
ch = logging.StreamHandler() |
|
ch.setLevel(logging.DEBUG) |
|
formatter = logging.Formatter("%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S") |
|
ch.setFormatter(formatter) |
|
logger.addHandler(ch) |
|
|
|
checkpoint = "openai/whisper-large-v3" |
|
|
|
BATCH_SIZE = 32 |
|
CHUNK_LENGTH_S = 30 |
|
NUM_PROC = 32 |
|
FILE_LIMIT_MB = 10000 |
|
|
|
pipeline = FlaxWhisperPipline(checkpoint, dtype=jnp.bfloat16, batch_size=BATCH_SIZE) |
|
stride_length_s = CHUNK_LENGTH_S / 6 |
|
chunk_len = round(CHUNK_LENGTH_S * pipeline.feature_extractor.sampling_rate) |
|
stride_left = stride_right = round(stride_length_s * pipeline.feature_extractor.sampling_rate) |
|
step = chunk_len - stride_left - stride_right |
|
|
|
|
|
logger.debug("Compiling forward call...") |
|
start = time.time() |
|
random_inputs = { |
|
"input_features": np.ones( |
|
(BATCH_SIZE, pipeline.model.config.num_mel_bins, 2 * pipeline.model.config.max_source_positions) |
|
) |
|
} |
|
random_timestamps = pipeline.forward(random_inputs, batch_size=BATCH_SIZE, return_timestamps=True) |
|
compile_time = time.time() - start |
|
logger.debug(f"Compiled in {compile_time}s") |
|
|
|
class TranscribeAudioRequest(BaseModel): |
|
audio_base64: str |
|
task: str = "transcribe" |
|
return_timestamps: bool = False |
|
|
|
def timeit(func): |
|
@wraps(func) |
|
async def wrapper(*args, **kwargs): |
|
start_time = time.time() |
|
result = await func(*args, **kwargs) |
|
end_time = time.time() |
|
execution_time = end_time - start_time |
|
if isinstance(result, dict): |
|
result['total_execution_time'] = execution_time |
|
else: |
|
result = {'result': result, 'total_execution_time': execution_time} |
|
return result |
|
return wrapper |
|
|
|
def check_api_key(x_api_key: str = Header(...)): |
|
api_key = os.environ.get("WHISPER_API_KEY") |
|
if not api_key or x_api_key != api_key: |
|
raise HTTPException(status_code=401, detail="Invalid or missing API key") |
|
return x_api_key |
|
|
|
@app.post("/transcribe_audio_file") |
|
@timeit |
|
async def transcribe_audio_file( |
|
file: UploadFile = File(...), |
|
task: str = Form("transcribe"), |
|
return_timestamps: bool = Form(False), |
|
api_key: str = Depends(check_api_key) |
|
) -> Dict[str, Any]: |
|
logger.debug("Starting transcribe_audio_file function") |
|
logger.debug(f"Received parameters - task: {task}, return_timestamps: {return_timestamps}") |
|
|
|
try: |
|
audio_data = await file.read() |
|
file_size = len(audio_data) |
|
file_size_mb = file_size / (1024 * 1024) |
|
logger.debug(f"Audio file size: {file_size} bytes ({file_size_mb:.2f}MB)") |
|
except Exception as e: |
|
logger.error(f"Error reading audio file: {str(e)}", exc_info=True) |
|
raise HTTPException(status_code=400, detail=f"Error reading audio file: {str(e)}") |
|
|
|
return await process_audio(audio_data, file_size_mb, task, return_timestamps) |
|
|
|
@app.post("/transcribe_audio_base64") |
|
@timeit |
|
async def transcribe_audio_base64( |
|
request: TranscribeAudioRequest, |
|
api_key: str = Depends(check_api_key) |
|
) -> Dict[str, Any]: |
|
logger.debug("Starting transcribe_audio_base64 function") |
|
logger.debug(f"Received parameters - task: {request.task}, return_timestamps: {request.return_timestamps}") |
|
|
|
try: |
|
audio_data = base64.b64decode(request.audio_base64) |
|
file_size = len(audio_data) |
|
file_size_mb = file_size / (1024 * 1024) |
|
logger.debug(f"Decoded audio data size: {file_size} bytes ({file_size_mb:.2f}MB)") |
|
except Exception as e: |
|
logger.error(f"Error decoding base64 audio data: {str(e)}", exc_info=True) |
|
raise HTTPException(status_code=400, detail=f"Error decoding base64 audio data: {str(e)}") |
|
|
|
return await process_audio(audio_data, file_size_mb, request.task, request.return_timestamps) |
|
|
|
async def process_audio(audio_data: bytes, file_size_mb: float, task: str, return_timestamps: bool) -> Dict[str, Any]: |
|
if file_size_mb > FILE_LIMIT_MB: |
|
logger.warning(f"Max file size exceeded: {file_size_mb:.2f}MB > {FILE_LIMIT_MB}MB") |
|
raise HTTPException(status_code=400, detail=f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.") |
|
|
|
try: |
|
logger.debug("Performing ffmpeg read on audio data") |
|
inputs = ffmpeg_read(audio_data, pipeline.feature_extractor.sampling_rate) |
|
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate} |
|
logger.debug("ffmpeg read completed successfully") |
|
except Exception as e: |
|
logger.error(f"Error in ffmpeg read: {str(e)}", exc_info=True) |
|
raise HTTPException(status_code=500, detail=f"Error processing audio data: {str(e)}") |
|
|
|
logger.debug("Calling tqdm_generate to transcribe audio") |
|
try: |
|
text, runtime, timing_info = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps) |
|
logger.debug(f"Transcription completed. Runtime: {runtime:.2f}s") |
|
except Exception as e: |
|
logger.error(f"Error in tqdm_generate: {str(e)}", exc_info=True) |
|
raise HTTPException(status_code=500, detail=f"Error transcribing audio: {str(e)}") |
|
|
|
logger.debug("Audio processing completed successfully") |
|
return jsonable_encoder({ |
|
"text": text, |
|
"runtime": runtime, |
|
"timing_info": timing_info |
|
}) |
|
|
|
def tqdm_generate(inputs: dict, task: str, return_timestamps: bool): |
|
start_time = time.time() |
|
logger.debug(f"Starting tqdm_generate - task: {task}, return_timestamps: {return_timestamps}") |
|
|
|
inputs_len = inputs["array"].shape[0] |
|
logger.debug(f"Input array length: {inputs_len}") |
|
|
|
all_chunk_start_idx = np.arange(0, inputs_len, step) |
|
num_samples = len(all_chunk_start_idx) |
|
num_batches = math.ceil(num_samples / BATCH_SIZE) |
|
logger.debug(f"Number of samples: {num_samples}, Number of batches: {num_batches}") |
|
|
|
logger.debug("Preprocessing audio for inference") |
|
try: |
|
dataloader = pipeline.preprocess_batch(inputs, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE) |
|
logger.debug("Preprocessing completed successfully") |
|
except Exception as e: |
|
logger.error(f"Error in preprocessing: {str(e)}", exc_info=True) |
|
raise |
|
|
|
model_outputs = [] |
|
transcription_start_time = time.time() |
|
logger.debug("Starting transcription...") |
|
|
|
try: |
|
for i, batch in enumerate(dataloader): |
|
logger.debug(f"Processing batch {i+1}/{num_batches} with {len(batch)} samples") |
|
batch_output = pipeline.forward(batch, batch_size=BATCH_SIZE, task=task, return_timestamps=True) |
|
model_outputs.append(batch_output) |
|
logger.debug(f"Batch {i+1} processed successfully") |
|
except Exception as e: |
|
logger.error(f"Error during batch processing: {str(e)}", exc_info=True) |
|
raise |
|
|
|
transcription_runtime = time.time() - transcription_start_time |
|
logger.debug(f"Transcription completed in {transcription_runtime:.2f}s") |
|
|
|
logger.debug("Post-processing transcription results") |
|
try: |
|
post_processed = pipeline.postprocess(model_outputs, return_timestamps=True) |
|
logger.debug("Post-processing completed successfully") |
|
except Exception as e: |
|
logger.error(f"Error in post-processing: {str(e)}", exc_info=True) |
|
raise |
|
|
|
text = post_processed["text"] |
|
if return_timestamps: |
|
timestamps = post_processed.get("chunks") |
|
timestamps = [ |
|
f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}" |
|
for chunk in timestamps |
|
] |
|
text = "\n".join(str(feature) for feature in timestamps) |
|
|
|
total_processing_time = time.time() - start_time |
|
logger.debug("tqdm_generate function completed successfully") |
|
return text, transcription_runtime, { |
|
"transcription_time": transcription_runtime, |
|
"total_processing_time": total_processing_time |
|
} |
|
|
|
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."): |
|
if seconds is not None: |
|
milliseconds = round(seconds * 1000.0) |
|
|
|
hours = milliseconds // 3_600_000 |
|
milliseconds -= hours * 3_600_000 |
|
|
|
minutes = milliseconds // 60_000 |
|
milliseconds -= minutes * 60_000 |
|
|
|
seconds = milliseconds // 1_000 |
|
milliseconds -= seconds * 1_000 |
|
|
|
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else "" |
|
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}" |
|
else: |
|
|
|
return seconds |
|
|
|
|