|
import logging |
|
import math |
|
import os |
|
import tempfile |
|
import time |
|
import yt_dlp as youtube_dl |
|
from fastapi import FastAPI, UploadFile, Form, HTTPException |
|
from fastapi.responses import HTMLResponse |
|
import jax.numpy as jnp |
|
import numpy as np |
|
from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE |
|
from transformers.pipelines.audio_utils import ffmpeg_read |
|
from whisper_jax import FlaxWhisperPipline |
|
|
|
app = FastAPI(title="Whisper JAX: The Fastest Whisper API ⚡️") |
|
|
|
logger = logging.getLogger("whisper-jax-app") |
|
logger.setLevel(logging.DEBUG) |
|
ch = logging.StreamHandler() |
|
ch.setLevel(logging.DEBUG) |
|
formatter = logging.Formatter("%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S") |
|
ch.setFormatter(formatter) |
|
logger.addHandler(ch) |
|
|
|
checkpoint = "openai/whisper-large-v3" |
|
|
|
BATCH_SIZE = 32 |
|
CHUNK_LENGTH_S = 30 |
|
NUM_PROC = 32 |
|
FILE_LIMIT_MB = 10000 |
|
YT_LENGTH_LIMIT_S = 15000 |
|
|
|
pipeline = FlaxWhisperPipline(checkpoint, dtype=jnp.bfloat16, batch_size=BATCH_SIZE) |
|
stride_length_s = CHUNK_LENGTH_S / 6 |
|
chunk_len = round(CHUNK_LENGTH_S * pipeline.feature_extractor.sampling_rate) |
|
stride_left = stride_right = round(stride_length_s * pipeline.feature_extractor.sampling_rate) |
|
step = chunk_len - stride_left - stride_right |
|
|
|
|
|
logger.debug("Compiling forward call...") |
|
start = time.time() |
|
random_inputs = { |
|
"input_features": np.ones( |
|
(BATCH_SIZE, pipeline.model.config.num_mel_bins, 2 * pipeline.model.config.max_source_positions) |
|
) |
|
} |
|
random_timestamps = pipeline.forward(random_inputs, batch_size=BATCH_SIZE, return_timestamps=True) |
|
compile_time = time.time() - start |
|
logger.debug(f"Compiled in {compile_time}s") |
|
|
|
@app.post("/transcribe_audio") |
|
async def transcribe_chunked_audio(audio_file: UploadFile, task: str = "transcribe", return_timestamps: bool = False): |
|
logger.debug("Starting transcribe_chunked_audio function") |
|
logger.debug(f"Received parameters - task: {task}, return_timestamps: {return_timestamps}") |
|
|
|
logger.debug("Checking for audio file...") |
|
if not audio_file: |
|
logger.warning("No audio file") |
|
raise HTTPException(status_code=400, detail="No audio file submitted!") |
|
|
|
logger.debug(f"Audio file received: {audio_file.filename}") |
|
|
|
try: |
|
|
|
file_content = await audio_file.read() |
|
file_size = len(file_content) |
|
file_size_mb = file_size / (1024 * 1024) |
|
logger.debug(f"File size: {file_size} bytes ({file_size_mb:.2f}MB)") |
|
except Exception as e: |
|
logger.error(f"Error reading file: {str(e)}", exc_info=True) |
|
raise HTTPException(status_code=500, detail=f"Error reading file: {str(e)}") |
|
|
|
if file_size_mb > FILE_LIMIT_MB: |
|
logger.warning(f"Max file size exceeded: {file_size_mb:.2f}MB > {FILE_LIMIT_MB}MB") |
|
raise HTTPException(status_code=400, detail=f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.") |
|
|
|
try: |
|
logger.debug("Performing ffmpeg read on audio file") |
|
inputs = ffmpeg_read(file_content, pipeline.feature_extractor.sampling_rate) |
|
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate} |
|
logger.debug("ffmpeg read completed successfully") |
|
except Exception as e: |
|
logger.error(f"Error in ffmpeg read: {str(e)}", exc_info=True) |
|
raise HTTPException(status_code=500, detail=f"Error processing audio file: {str(e)}") |
|
|
|
logger.debug("Calling tqdm_generate to transcribe audio") |
|
try: |
|
text, runtime = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps) |
|
logger.debug(f"Transcription completed. Runtime: {runtime:.2f}s") |
|
except Exception as e: |
|
logger.error(f"Error in tqdm_generate: {str(e)}", exc_info=True) |
|
raise HTTPException(status_code=500, detail=f"Error transcribing audio: {str(e)}") |
|
|
|
logger.debug("Transcribe_chunked_audio function completed successfully") |
|
return {"text": text, "runtime": runtime} |
|
|
|
@app.post("/transcribe_youtube") |
|
async def transcribe_youtube(yt_url: str = Form(...), task: str = "transcribe", return_timestamps: bool = False): |
|
logger.debug("Loading YouTube file...") |
|
try: |
|
html_embed_str = _return_yt_html_embed(yt_url) |
|
except Exception as e: |
|
logger.error("Error generating YouTube HTML embed:", exc_info=True) |
|
raise HTTPException(status_code=500, detail="Error generating YouTube HTML embed") |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
filepath = os.path.join(tmpdirname, "video.mp4") |
|
try: |
|
logger.debug("Downloading YouTube audio...") |
|
download_yt_audio(yt_url, filepath) |
|
except Exception as e: |
|
logger.error("Error downloading YouTube audio:", exc_info=True) |
|
raise HTTPException(status_code=500, detail="Error downloading YouTube audio") |
|
|
|
try: |
|
logger.debug(f"Opening downloaded audio file: {filepath}") |
|
with open(filepath, "rb") as f: |
|
inputs = f.read() |
|
except Exception as e: |
|
logger.error("Error reading downloaded audio file:", exc_info=True) |
|
raise HTTPException(status_code=500, detail="Error reading downloaded audio file") |
|
|
|
inputs = ffmpeg_read(inputs, pipeline.feature_extractor.sampling_rate) |
|
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate} |
|
logger.debug("Done loading YouTube file") |
|
|
|
try: |
|
logger.debug("Calling tqdm_generate to transcribe YouTube audio") |
|
text, runtime = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps) |
|
except Exception as e: |
|
logger.error("Error transcribing YouTube audio:", exc_info=True) |
|
raise HTTPException(status_code=500, detail="Error transcribing YouTube audio") |
|
|
|
return {"html_embed": html_embed_str, "text": text, "runtime": runtime} |
|
|
|
def tqdm_generate(inputs: dict, task: str, return_timestamps: bool): |
|
logger.debug(f"Starting tqdm_generate - task: {task}, return_timestamps: {return_timestamps}") |
|
|
|
inputs_len = inputs["array"].shape[0] |
|
logger.debug(f"Input array length: {inputs_len}") |
|
|
|
all_chunk_start_idx = np.arange(0, inputs_len, step) |
|
num_samples = len(all_chunk_start_idx) |
|
num_batches = math.ceil(num_samples / BATCH_SIZE) |
|
logger.debug(f"Number of samples: {num_samples}, Number of batches: {num_batches}") |
|
|
|
logger.debug("Preprocessing audio for inference") |
|
try: |
|
dataloader = pipeline.preprocess_batch(inputs, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE) |
|
logger.debug("Preprocessing completed successfully") |
|
except Exception as e: |
|
logger.error(f"Error in preprocessing: {str(e)}", exc_info=True) |
|
raise |
|
|
|
model_outputs = [] |
|
start_time = time.time() |
|
logger.debug("Starting transcription...") |
|
|
|
try: |
|
for i, batch in enumerate(dataloader): |
|
logger.debug(f"Processing batch {i+1}/{num_batches} with {len(batch)} samples") |
|
batch_output = pipeline.forward(batch, batch_size=BATCH_SIZE, task=task, return_timestamps=True) |
|
model_outputs.append(batch_output) |
|
logger.debug(f"Batch {i+1} processed successfully") |
|
except Exception as e: |
|
logger.error(f"Error during batch processing: {str(e)}", exc_info=True) |
|
raise |
|
|
|
runtime = time.time() - start_time |
|
logger.debug(f"Transcription completed in {runtime:.2f}s") |
|
|
|
logger.debug("Post-processing transcription results") |
|
try: |
|
post_processed = pipeline.postprocess(model_outputs, return_timestamps=True) |
|
logger.debug("Post-processing completed successfully") |
|
except Exception as e: |
|
logger.error(f"Error in post-processing: {str(e)}", exc_info=True) |
|
raise |
|
|
|
text = post_processed["text"] |
|
if return_timestamps: |
|
timestamps = post_processed.get("chunks") |
|
timestamps = [ |
|
f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}" |
|
for chunk in timestamps |
|
] |
|
text = "\n".join(str(feature) for feature in timestamps) |
|
|
|
logger.debug("tqdm_generate function completed successfully") |
|
return text, runtime |
|
|
|
def _return_yt_html_embed(yt_url): |
|
video_id = yt_url.split("?v=")[-1] |
|
HTML_str = ( |
|
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' |
|
" </center>" |
|
) |
|
return HTML_str |
|
|
|
def download_yt_audio(yt_url, filename): |
|
info_loader = youtube_dl.YoutubeDL() |
|
try: |
|
logger.debug(f"Extracting info for YouTube URL: {yt_url}") |
|
info = info_loader.extract_info(yt_url, download=False) |
|
except youtube_dl.utils.DownloadError as err: |
|
logger.error("Error extracting YouTube info:", exc_info=True) |
|
raise HTTPException(status_code=400, detail=str(err)) |
|
|
|
file_length = info["duration_string"] |
|
file_h_m_s = file_length.split(":") |
|
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] |
|
if len(file_h_m_s) == 1: |
|
file_h_m_s.insert(0, 0) |
|
if len(file_h_m_s) == 2: |
|
file_h_m_s.insert(0, 0) |
|
|
|
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] |
|
if file_length_s > YT_LENGTH_LIMIT_S: |
|
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) |
|
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) |
|
raise HTTPException(status_code=400, detail=f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") |
|
|
|
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} |
|
with youtube_dl.YoutubeDL(ydl_opts) as ydl: |
|
try: |
|
logger.debug(f"Downloading YouTube audio to {filename}") |
|
ydl.download([yt_url]) |
|
except youtube_dl.utils.ExtractorError as err: |
|
logger.error("Error downloading YouTube audio:", exc_info=True) |
|
raise HTTPException(status_code=400, detail=str(err)) |
|
|
|
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."): |
|
if seconds is not None: |
|
milliseconds = round(seconds * 1000.0) |
|
|
|
hours = milliseconds // 3_600_000 |
|
milliseconds -= hours * 3_600_000 |
|
|
|
minutes = milliseconds // 60_000 |
|
milliseconds -= minutes * 60_000 |
|
|
|
seconds = milliseconds // 1_000 |
|
milliseconds -= seconds * 1_000 |
|
|
|
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else "" |
|
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}" |
|
else: |
|
|
|
return seconds |