|
import base64 |
|
import logging |
|
import math |
|
import tempfile |
|
import time |
|
from typing import Optional, Tuple |
|
import os |
|
|
|
import fastapi |
|
import jax.numpy as jnp |
|
import numpy as np |
|
import yt_dlp as youtube_dl |
|
from jax.experimental.compilation_cache import compilation_cache as cc |
|
from pydantic import BaseModel |
|
from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE |
|
from transformers.pipelines.audio_utils import ffmpeg_read |
|
|
|
from whisper_jax import FlaxWhisperPipline |
|
|
|
cc.initialize_cache("./jax_cache") |
|
checkpoint = "openai/whisper-large-v3" |
|
|
|
BATCH_SIZE = 32 |
|
CHUNK_LENGTH_S = 30 |
|
NUM_PROC = 32 |
|
FILE_LIMIT_MB = 10000 |
|
YT_LENGTH_LIMIT_S = 15000 |
|
|
|
logger = logging.getLogger("whisper-jax-app") |
|
logger.setLevel(logging.INFO) |
|
ch = logging.StreamHandler() |
|
ch.setLevel(logging.INFO) |
|
formatter = logging.Formatter("%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S") |
|
ch.setFormatter(formatter) |
|
logger.addHandler(ch) |
|
|
|
pipeline = FlaxWhisperPipline(checkpoint, dtype=jnp.bfloat16, batch_size=BATCH_SIZE) |
|
stride_length_s = CHUNK_LENGTH_S / 6 |
|
chunk_len = round(CHUNK_LENGTH_S * pipeline.feature_extractor.sampling_rate) |
|
stride_left = stride_right = round(stride_length_s * pipeline.feature_extractor.sampling_rate) |
|
step = chunk_len - stride_left - stride_right |
|
|
|
|
|
logger.info("compiling forward call...") |
|
start = time.time() |
|
random_inputs = { |
|
"input_features": np.ones( |
|
(BATCH_SIZE, pipeline.model.config.num_mel_bins, 2 * pipeline.model.config.max_source_positions) |
|
) |
|
} |
|
random_timestamps = pipeline.forward(random_inputs, batch_size=BATCH_SIZE, return_timestamps=True) |
|
compile_time = time.time() - start |
|
logger.info(f"compiled in {compile_time}s") |
|
|
|
app = fastapi.FastAPI() |
|
|
|
class TranscriptionRequest(BaseModel): |
|
audio_file: str |
|
task: str = "transcribe" |
|
return_timestamps: bool = False |
|
|
|
class TranscriptionResponse(BaseModel): |
|
transcription: str |
|
runtime: float |
|
|
|
@app.post("/transcribe", response_model=TranscriptionResponse) |
|
def transcribe_audio(request: TranscriptionRequest): |
|
logger.info("loading audio file...") |
|
if not request.audio_file: |
|
logger.warning("No audio file") |
|
raise fastapi.HTTPException(status_code=400, detail="No audio file submitted!") |
|
|
|
audio_bytes = base64.b64decode(request.audio_file) |
|
file_size_mb = len(audio_bytes) / (1024 * 1024) |
|
if file_size_mb > FILE_LIMIT_MB: |
|
logger.warning("Max file size exceeded") |
|
raise fastapi.HTTPException( |
|
status_code=400, |
|
detail=f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.", |
|
) |
|
|
|
inputs = ffmpeg_read(audio_bytes, pipeline.feature_extractor.sampling_rate) |
|
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate} |
|
logger.info("done loading") |
|
text, runtime = _tqdm_generate(inputs, task=request.task, return_timestamps=request.return_timestamps) |
|
return TranscriptionResponse(transcription=text, runtime=runtime) |
|
|
|
@app.post("/transcribe_youtube") |
|
def transcribe_youtube( |
|
yt_url: str, task: str = "transcribe", return_timestamps: bool = False |
|
) -> Tuple[str, str, float]: |
|
logger.info("loading youtube file...") |
|
html_embed_str = _return_yt_html_embed(yt_url) |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
filepath = os.path.join(tmpdirname, "video.mp4") |
|
_download_yt_audio(yt_url, filepath) |
|
|
|
with open(filepath, "rb") as f: |
|
inputs = f.read() |
|
|
|
inputs = ffmpeg_read(inputs, pipeline.feature_extractor.sampling_rate) |
|
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate} |
|
logger.info("done loading...") |
|
text, runtime = _tqdm_generate(inputs, task=task, return_timestamps=return_timestamps) |
|
return html_embed_str, text, runtime |
|
|
|
def _tqdm_generate(inputs: dict, task: str, return_timestamps: bool): |
|
inputs_len = inputs["array"].shape[0] |
|
all_chunk_start_idx = np.arange(0, inputs_len, step) |
|
num_samples = len(all_chunk_start_idx) |
|
num_batches = math.ceil(num_samples / BATCH_SIZE) |
|
|
|
dataloader = pipeline.preprocess_batch(inputs, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE) |
|
model_outputs = [] |
|
start_time = time.time() |
|
logger.info("transcribing...") |
|
|
|
for batch, _ in zip(dataloader, range(num_batches)): |
|
model_outputs.append(pipeline.forward(batch, batch_size=BATCH_SIZE, task=task, return_timestamps=True)) |
|
runtime = time.time() - start_time |
|
logger.info("done transcription") |
|
|
|
logger.info("post-processing...") |
|
post_processed = pipeline.postprocess(model_outputs, return_timestamps=True) |
|
text = post_processed["text"] |
|
if return_timestamps: |
|
timestamps = post_processed.get("chunks") |
|
timestamps = [ |
|
f"[{_format_timestamp(chunk['timestamp'][0])} -> {_format_timestamp(chunk['timestamp'][1])}] {chunk['text']}" |
|
for chunk in timestamps |
|
] |
|
text = "\n".join(str(feature) for feature in timestamps) |
|
logger.info("done post-processing") |
|
return text, runtime |
|
|
|
def _return_yt_html_embed(yt_url: str) -> str: |
|
video_id = yt_url.split("?v=")[-1] |
|
HTML_str = ( |
|
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' |
|
" </center>" |
|
) |
|
return HTML_str |
|
|
|
def _download_yt_audio(yt_url: str, filename: str): |
|
info_loader = youtube_dl.YoutubeDL() |
|
try: |
|
info = info_loader.extract_info(yt_url, download=False) |
|
except youtube_dl.utils.DownloadError as err: |
|
raise fastapi.HTTPException(status_code=400, detail=str(err)) |
|
|
|
file_length = info["duration_string"] |
|
file_h_m_s = file_length.split(":") |
|
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] |
|
if len(file_h_m_s) == 1: |
|
file_h_m_s.insert(0, 0) |
|
if len(file_h_m_s) == 2: |
|
file_h_m_s.insert(0, 0) |
|
|
|
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] |
|
if file_length_s > YT_LENGTH_LIMIT_S: |
|
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) |
|
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) |
|
raise fastapi.HTTPException( |
|
status_code=400, |
|
detail=f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.", |
|
) |
|
|
|
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} |
|
with youtube_dl.YoutubeDL(ydl_opts) as ydl: |
|
try: |
|
ydl.download([yt_url]) |
|
except youtube_dl.utils.ExtractorError as err: |
|
raise fastapi.HTTPException(status_code=400, detail=str(err)) |
|
|
|
def _format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."): |
|
if seconds is not None: |
|
milliseconds = round(seconds * 1000.0) |
|
|
|
hours = milliseconds // 3_600_000 |
|
milliseconds -= hours * 3_600_000 |
|
|
|
minutes = milliseconds // 60_000 |
|
milliseconds -= minutes * 60_000 |
|
|
|
seconds = milliseconds // 1_000 |
|
milliseconds -= seconds * 1_000 |
|
|
|
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else "" |
|
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}" |
|
else: |
|
|
|
return seconds |