Spaces:
Edmond98
/
Running on A100

sts / app.py
Edmond7's picture
Update app.py
0960663 verified
raw
history blame
17.1 kB
import os
from fastapi import FastAPI, HTTPException, File, UploadFile, Depends, Security, Form
from fastapi.security.api_key import APIKeyHeader, APIKey
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from typing import Optional
import numpy as np
import io
import soundfile as sf
import base64
import logging
import torch
import librosa
from pathlib import Path
from pydub import AudioSegment
from moviepy.editor import VideoFileClip
import traceback
from logging.handlers import RotatingFileHandler
import boto3
from botocore.exceptions import NoCredentialsError
import time
import tempfile
import magic
# Import functions from other modules
from asr import transcribe, ASR_LANGUAGES, ASR_SAMPLING_RATE
from tts import synthesize, TTS_LANGUAGES
from lid import identify
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Add a file handler
file_handler = RotatingFileHandler('app.log', maxBytes=10000000, backupCount=5)
file_handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
app = FastAPI(title="MMS: Scaling Speech Technology to 1000+ languages")
# S3 Configuration
S3_BUCKET = os.environ.get("S3_BUCKET")
S3_REGION = os.environ.get("S3_REGION")
S3_ACCESS_KEY_ID = os.environ.get("AWS_ACCESS_KEY_ID")
S3_SECRET_ACCESS_KEY = os.environ.get("AWS_SECRET_ACCESS_KEY")
# API Key Configuration
API_KEY = os.environ.get("API_KEY")
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
# Initialize S3 client
s3_client = boto3.client(
's3',
aws_access_key_id=S3_ACCESS_KEY_ID,
aws_secret_access_key=S3_SECRET_ACCESS_KEY,
region_name=S3_REGION
)
# Define request models
class AudioRequest(BaseModel):
audio: str # Base64 encoded audio or video data
language: Optional[str] = None
class TTSRequest(BaseModel):
text: str
language: Optional[str] = None
speed: float = 1.0
class LanguageRequest(BaseModel):
language: Optional[str] = None
async def get_api_key(api_key_header: str = Security(api_key_header)):
if api_key_header == API_KEY:
return api_key_header
raise HTTPException(status_code=403, detail="Could not validate credentials")
def extract_audio_from_file(input_bytes):
with tempfile.NamedTemporaryFile(delete=False, suffix='.tmp') as temp_file:
temp_file.write(input_bytes)
temp_file_path = temp_file.name
try:
# Log file info
file_info = magic.from_file(temp_file_path, mime=True)
logger.info(f"Received file of type: {file_info}")
# Try reading with soundfile first
try:
audio_array, sample_rate = sf.read(temp_file_path)
logger.info(f"Successfully read audio with soundfile. Shape: {audio_array.shape}, Sample rate: {sample_rate}")
return audio_array, sample_rate
except Exception as e:
logger.info(f"Could not read with soundfile: {str(e)}")
# Try reading as video
try:
video = VideoFileClip(temp_file_path)
audio = video.audio
if audio is not None:
audio_array = audio.to_soundarray()
sample_rate = audio.fps
audio_array = audio_array.mean(axis=1) if len(audio_array.shape) > 1 and audio_array.shape[1] > 1 else audio_array
audio_array = audio_array.astype(np.float32)
audio_array /= np.max(np.abs(audio_array))
video.close()
logger.info(f"Successfully extracted audio from video. Shape: {audio_array.shape}, Sample rate: {sample_rate}")
return audio_array, sample_rate
else:
logger.info("Video file contains no audio")
except Exception as e:
logger.info(f"Could not read as video: {str(e)}")
# Try reading with pydub
try:
audio = AudioSegment.from_file(temp_file_path)
audio_array = np.array(audio.get_array_of_samples())
audio_array = audio_array.astype(np.float32) / (2**15 if audio.sample_width == 2 else 2**7)
audio_array = audio_array.reshape((-1, 2)).mean(axis=1) if audio.channels == 2 else audio_array
logger.info(f"Successfully read audio with pydub. Shape: {audio_array.shape}, Sample rate: {audio.frame_rate}")
return audio_array, audio.frame_rate
except Exception as e:
logger.info(f"Could not read with pydub: {str(e)}")
raise ValueError(f"Unsupported file format: {file_info}")
finally:
os.unlink(temp_file_path)
@app.post("/transcribe")
async def transcribe_audio(request: AudioRequest, api_key: APIKey = Depends(get_api_key)):
start_time = time.time()
try:
input_bytes = base64.b64decode(request.audio)
audio_array, sample_rate = extract_audio_from_file(input_bytes)
# Ensure audio_array is float32
audio_array = audio_array.astype(np.float32)
# Resample if necessary
if sample_rate != ASR_SAMPLING_RATE:
audio_array = librosa.resample(audio_array, orig_sr=sample_rate, target_sr=ASR_SAMPLING_RATE)
if request.language is None:
# If no language is provided, use language identification
identified_language = identify(audio_array)
result = transcribe(audio_array, identified_language)
else:
result = transcribe(audio_array, request.language)
processing_time = time.time() - start_time
return JSONResponse(content={"transcription": result, "processing_time_seconds": processing_time})
except Exception as e:
logger.error(f"Error in transcribe_audio: {str(e)}", exc_info=True)
error_details = {
"error": str(e),
"traceback": traceback.format_exc()
}
processing_time = time.time() - start_time
return JSONResponse(
status_code=500,
content={"message": "An error occurred during transcription", "details": error_details, "processing_time_seconds": processing_time}
)
@app.post("/transcribe_file")
async def transcribe_audio_file(
file: UploadFile = File(...),
language: Optional[str] = Form(None),
api_key: APIKey = Depends(get_api_key)
):
start_time = time.time()
try:
contents = await file.read()
audio_array, sample_rate = extract_audio_from_file(contents)
# Ensure audio_array is float32
audio_array = audio_array.astype(np.float32)
# Resample if necessary
if sample_rate != ASR_SAMPLING_RATE:
audio_array = librosa.resample(audio_array, orig_sr=sample_rate, target_sr=ASR_SAMPLING_RATE)
if language is None:
# If no language is provided, use language identification
identified_language = identify(audio_array)
result = transcribe(audio_array, identified_language)
else:
result = transcribe(audio_array, language)
processing_time = time.time() - start_time
return JSONResponse(content={"transcription": result, "processing_time_seconds": processing_time})
except Exception as e:
logger.error(f"Error in transcribe_audio_file: {str(e)}", exc_info=True)
error_details = {
"error": str(e),
"traceback": traceback.format_exc()
}
processing_time = time.time() - start_time
return JSONResponse(
status_code=500,
content={"message": "An error occurred during transcription", "details": error_details, "processing_time_seconds": processing_time}
)
@app.post("/synthesize")
async def synthesize_speech(request: TTSRequest, api_key: APIKey = Depends(get_api_key)):
start_time = time.time()
logger.info(f"Synthesize request received: text='{request.text}', language='{request.language}', speed={request.speed}")
try:
if request.language is None:
# If no language is provided, default to English
lang_code = "eng"
else:
# Extract the ISO code from the full language name
lang_code = request.language.split()[0].strip()
# Input validation
if not request.text:
raise ValueError("Text cannot be empty")
if lang_code not in TTS_LANGUAGES:
raise ValueError(f"Unsupported language: {lang_code}")
if not 0.5 <= request.speed <= 2.0:
raise ValueError(f"Speed must be between 0.5 and 2.0, got {request.speed}")
logger.info(f"Calling synthesize function with lang_code: {lang_code}")
result, filtered_text = synthesize(request.text, lang_code, request.speed)
logger.info(f"Synthesize function completed. Filtered text: '{filtered_text}'")
if result is None:
logger.error("Synthesize function returned None")
raise ValueError("Synthesis failed to produce audio")
sample_rate, audio = result
logger.info(f"Synthesis result: sample_rate={sample_rate}, audio_shape={audio.shape if isinstance(audio, np.ndarray) else 'not numpy array'}, audio_dtype={audio.dtype if isinstance(audio, np.ndarray) else type(audio)}")
logger.info("Converting audio to numpy array")
audio = np.array(audio, dtype=np.float32)
logger.info(f"Converted audio shape: {audio.shape}, dtype: {audio.dtype}")
logger.info("Normalizing audio")
max_value = np.max(np.abs(audio))
if max_value == 0:
logger.warning("Audio array is all zeros")
raise ValueError("Generated audio is silent (all zeros)")
audio = audio / max_value
logger.info(f"Normalized audio range: [{audio.min()}, {audio.max()}]")
logger.info("Converting to int16")
audio = (audio * 32767).astype(np.int16)
logger.info(f"Int16 audio shape: {audio.shape}, dtype: {audio.dtype}")
logger.info("Writing audio to buffer")
buffer = io.BytesIO()
sf.write(buffer, audio, sample_rate, format='wav')
buffer.seek(0)
logger.info(f"Buffer size: {buffer.getbuffer().nbytes} bytes")
# Generate a unique filename
filename = f"synthesized_audio_{int(time.time())}.wav"
# Upload to S3 without ACL
try:
s3_client.upload_fileobj(
buffer,
S3_BUCKET,
filename,
ExtraArgs={'ContentType': 'audio/wav'}
)
logger.info(f"File uploaded successfully to S3: {filename}")
# Generate the public URL with the correct format
url = f"https://s3.{S3_REGION}.amazonaws.com/{S3_BUCKET}/{filename}"
logger.info(f"Public URL generated: {url}")
processing_time = time.time() - start_time
return JSONResponse(content={"audio_url": url, "processing_time_seconds": processing_time})
except NoCredentialsError:
logger.error("AWS credentials not available or invalid")
raise HTTPException(status_code=500, detail="Could not upload file to S3: Missing or invalid credentials")
except Exception as e:
logger.error(f"Failed to upload to S3: {str(e)}")
raise HTTPException(status_code=500, detail=f"Could not upload file to S3: {str(e)}")
except ValueError as ve:
logger.error(f"ValueError in synthesize_speech: {str(ve)}", exc_info=True)
processing_time = time.time() - start_time
return JSONResponse(
status_code=400,
content={"message": "Invalid input", "details": str(ve), "processing_time_seconds": processing_time}
)
except Exception as e:
logger.error(f"Unexpected error in synthesize_speech: {str(e)}", exc_info=True)
error_details = {
"error": str(e),
"type": type(e).__name__,
"traceback": traceback.format_exc()
}
processing_time = time.time() - start_time
return JSONResponse(
status_code=500,
content={"message": "An unexpected error occurred during speech synthesis", "details": error_details, "processing_time_seconds": processing_time}
)
@app.post("/identify")
async def identify_language(request: AudioRequest, api_key: APIKey = Depends(get_api_key)):
start_time = time.time()
try:
input_bytes = base64.b64decode(request.audio)
audio_array, sample_rate = extract_audio_from_file(input_bytes)
result = identify(audio_array)
processing_time = time.time() - start_time
return JSONResponse(content={"language_identification": result, "processing_time_seconds": processing_time})
except Exception as e:
logger.error(f"Error in identify_language: {str(e)}", exc_info=True)
error_details = {
"error": str(e),
"traceback": traceback.format_exc()
}
processing_time = time.time() - start_time
return JSONResponse(
status_code=500,
content={"message": "An error occurred during language identification", "details": error_details, "processing_time_seconds": processing_time}
)
@app.post("/identify_file")
async def identify_language_file(
file: UploadFile = File(...),
api_key: APIKey = Depends(get_api_key)
):
start_time = time.time()
try:
contents = await file.read()
audio_array, sample_rate = extract_audio_from_file(contents)
result = identify(audio_array)
processing_time = time.time() - start_time
return JSONResponse(content={"language_identification": result, "processing_time_seconds": processing_time})
except Exception as e:
logger.error(f"Error in identify_language_file: {str(e)}", exc_info=True)
error_details = {
"error": str(e),
"traceback": traceback.format_exc()
}
processing_time = time.time() - start_time
return JSONResponse(
status_code=500,
content={"message": "An error occurred during language identification", "details": error_details, "processing_time_seconds": processing_time}
)
@app.post("/asr_languages")
async def get_asr_languages(request: LanguageRequest, api_key: APIKey = Depends(get_api_key)):
start_time = time.time()
try:
if request.language is None or request.language == "":
# If no language is provided, return all languages
matching_languages = ASR_LANGUAGES
else:
matching_languages = [lang for lang in ASR_LANGUAGES if lang.lower().startswith(request.language.lower())]
processing_time = time.time() - start_time
return JSONResponse(content={"languages": matching_languages, "processing_time_seconds": processing_time})
except Exception as e:
logger.error(f"Error in get_asr_languages: {str(e)}", exc_info=True)
error_details = {
"error": str(e),
"traceback": traceback.format_exc()
}
processing_time = time.time() - start_time
return JSONResponse(
status_code=500,
content={"message": "An error occurred while fetching ASR languages", "details": error_details, "processing_time_seconds": processing_time}
)
@app.post("/tts_languages")
async def get_tts_languages(request: LanguageRequest, api_key: APIKey = Depends(get_api_key)):
start_time = time.time()
try:
if request.language is None or request.language == "":
# If no language is provided, return all languages
matching_languages = TTS_LANGUAGES
else:
matching_languages = [lang for lang in TTS_LANGUAGES if lang.lower().startswith(request.language.lower())]
processing_time = time.time() - start_time
return JSONResponse(content={"languages": matching_languages, "processing_time_seconds": processing_time})
except Exception as e:
logger.error(f"Error in get_tts_languages: {str(e)}", exc_info=True)
error_details = {
"error": str(e),
"traceback": traceback.format_exc()
}
processing_time = time.time() - start_time
return JSONResponse(
status_code=500,
content={"message": "An error occurred while fetching TTS languages", "details": error_details, "processing_time_seconds": processing_time}
)
@app.get("/health")
async def health_check():
return {"status": "ok"}
@app.get("/")
async def root():
return {
"message": "Welcome to the MMS Speech Technology API",
"version": "1.0",
"endpoints": [
"/transcribe",
"/transcribe_file",
"/synthesize",
"/identify",
"/identify_file",
"/asr_languages",
"/tts_languages",
"/health"
]
}