|
"""shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers""" |
|
|
|
from functools import partial |
|
from inspect import isfunction |
|
from collections import namedtuple |
|
from einops import rearrange, repeat |
|
import torch |
|
from torch import nn, einsum |
|
import torch.nn.functional as F |
|
|
|
|
|
DEFAULT_DIM_HEAD = 64 |
|
|
|
Intermediates = namedtuple("Intermediates", ["pre_softmax_attn", "post_softmax_attn"]) |
|
|
|
LayerIntermediates = namedtuple("Intermediates", ["hiddens", "attn_intermediates"]) |
|
|
|
|
|
class AbsolutePositionalEmbedding(nn.Module): |
|
def __init__(self, dim, max_seq_len): |
|
super().__init__() |
|
self.emb = nn.Embedding(max_seq_len, dim) |
|
self.init_() |
|
|
|
def init_(self): |
|
nn.init.normal_(self.emb.weight, std=0.02) |
|
|
|
def forward(self, x): |
|
n = torch.arange(x.shape[1], device=x.device) |
|
return self.emb(n)[None, :, :] |
|
|
|
|
|
class FixedPositionalEmbedding(nn.Module): |
|
def __init__(self, dim): |
|
super().__init__() |
|
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
def forward(self, x, seq_dim=1, offset=0): |
|
t = ( |
|
torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) |
|
+ offset |
|
) |
|
sinusoid_inp = torch.einsum("i , j -> i j", t, self.inv_freq) |
|
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1) |
|
return emb[None, :, :] |
|
|
|
|
|
|
|
|
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
|
|
def default(val, d): |
|
if exists(val): |
|
return val |
|
return d() if isfunction(d) else d |
|
|
|
|
|
def always(val): |
|
def inner(*args, **kwargs): |
|
return val |
|
|
|
return inner |
|
|
|
|
|
def not_equals(val): |
|
def inner(x): |
|
return x != val |
|
|
|
return inner |
|
|
|
|
|
def equals(val): |
|
def inner(x): |
|
return x == val |
|
|
|
return inner |
|
|
|
|
|
def max_neg_value(tensor): |
|
return -torch.finfo(tensor.dtype).max |
|
|
|
|
|
|
|
|
|
|
|
def pick_and_pop(keys, d): |
|
values = list(map(lambda key: d.pop(key), keys)) |
|
return dict(zip(keys, values)) |
|
|
|
|
|
def group_dict_by_key(cond, d): |
|
return_val = [dict(), dict()] |
|
for key in d.keys(): |
|
match = bool(cond(key)) |
|
ind = int(not match) |
|
return_val[ind][key] = d[key] |
|
return (*return_val,) |
|
|
|
|
|
def string_begins_with(prefix, str): |
|
return str.startswith(prefix) |
|
|
|
|
|
def group_by_key_prefix(prefix, d): |
|
return group_dict_by_key(partial(string_begins_with, prefix), d) |
|
|
|
|
|
def groupby_prefix_and_trim(prefix, d): |
|
kwargs_with_prefix, kwargs = group_dict_by_key( |
|
partial(string_begins_with, prefix), d |
|
) |
|
kwargs_without_prefix = dict( |
|
map(lambda x: (x[0][len(prefix) :], x[1]), tuple(kwargs_with_prefix.items())) |
|
) |
|
return kwargs_without_prefix, kwargs |
|
|
|
|
|
|
|
class Scale(nn.Module): |
|
def __init__(self, value, fn): |
|
super().__init__() |
|
self.value = value |
|
self.fn = fn |
|
|
|
def forward(self, x, **kwargs): |
|
x, *rest = self.fn(x, **kwargs) |
|
return (x * self.value, *rest) |
|
|
|
|
|
class Rezero(nn.Module): |
|
def __init__(self, fn): |
|
super().__init__() |
|
self.fn = fn |
|
self.g = nn.Parameter(torch.zeros(1)) |
|
|
|
def forward(self, x, **kwargs): |
|
x, *rest = self.fn(x, **kwargs) |
|
return (x * self.g, *rest) |
|
|
|
|
|
class ScaleNorm(nn.Module): |
|
def __init__(self, dim, eps=1e-5): |
|
super().__init__() |
|
self.scale = dim**-0.5 |
|
self.eps = eps |
|
self.g = nn.Parameter(torch.ones(1)) |
|
|
|
def forward(self, x): |
|
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale |
|
return x / norm.clamp(min=self.eps) * self.g |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
def __init__(self, dim, eps=1e-8): |
|
super().__init__() |
|
self.scale = dim**-0.5 |
|
self.eps = eps |
|
self.g = nn.Parameter(torch.ones(dim)) |
|
|
|
def forward(self, x): |
|
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale |
|
return x / norm.clamp(min=self.eps) * self.g |
|
|
|
|
|
class Residual(nn.Module): |
|
def forward(self, x, residual): |
|
return x + residual |
|
|
|
|
|
class GRUGating(nn.Module): |
|
def __init__(self, dim): |
|
super().__init__() |
|
self.gru = nn.GRUCell(dim, dim) |
|
|
|
def forward(self, x, residual): |
|
gated_output = self.gru( |
|
rearrange(x, "b n d -> (b n) d"), rearrange(residual, "b n d -> (b n) d") |
|
) |
|
|
|
return gated_output.reshape_as(x) |
|
|
|
|
|
|
|
|
|
|
|
class GEGLU(nn.Module): |
|
def __init__(self, dim_in, dim_out): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out * 2) |
|
|
|
def forward(self, x): |
|
x, gate = self.proj(x).chunk(2, dim=-1) |
|
return x * F.gelu(gate) |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): |
|
super().__init__() |
|
inner_dim = int(dim * mult) |
|
dim_out = default(dim_out, dim) |
|
project_in = ( |
|
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) |
|
if not glu |
|
else GEGLU(dim, inner_dim) |
|
) |
|
|
|
self.net = nn.Sequential( |
|
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) |
|
) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
dim_head=DEFAULT_DIM_HEAD, |
|
heads=8, |
|
causal=False, |
|
mask=None, |
|
talking_heads=False, |
|
sparse_topk=None, |
|
use_entmax15=False, |
|
num_mem_kv=0, |
|
dropout=0.0, |
|
on_attn=False, |
|
): |
|
super().__init__() |
|
if use_entmax15: |
|
raise NotImplementedError( |
|
"Check out entmax activation instead of softmax activation!" |
|
) |
|
self.scale = dim_head**-0.5 |
|
self.heads = heads |
|
self.causal = causal |
|
self.mask = mask |
|
|
|
inner_dim = dim_head * heads |
|
|
|
self.to_q = nn.Linear(dim, inner_dim, bias=False) |
|
self.to_k = nn.Linear(dim, inner_dim, bias=False) |
|
self.to_v = nn.Linear(dim, inner_dim, bias=False) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
|
|
self.talking_heads = talking_heads |
|
if talking_heads: |
|
self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads)) |
|
self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads)) |
|
|
|
|
|
self.sparse_topk = sparse_topk |
|
|
|
|
|
|
|
self.attn_fn = F.softmax |
|
|
|
|
|
self.num_mem_kv = num_mem_kv |
|
if num_mem_kv > 0: |
|
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) |
|
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) |
|
|
|
|
|
self.attn_on_attn = on_attn |
|
self.to_out = ( |
|
nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) |
|
if on_attn |
|
else nn.Linear(inner_dim, dim) |
|
) |
|
|
|
def forward( |
|
self, |
|
x, |
|
context=None, |
|
mask=None, |
|
context_mask=None, |
|
rel_pos=None, |
|
sinusoidal_emb=None, |
|
prev_attn=None, |
|
mem=None, |
|
): |
|
b, n, _, h, talking_heads, device = ( |
|
*x.shape, |
|
self.heads, |
|
self.talking_heads, |
|
x.device, |
|
) |
|
kv_input = default(context, x) |
|
|
|
q_input = x |
|
k_input = kv_input |
|
v_input = kv_input |
|
|
|
if exists(mem): |
|
k_input = torch.cat((mem, k_input), dim=-2) |
|
v_input = torch.cat((mem, v_input), dim=-2) |
|
|
|
if exists(sinusoidal_emb): |
|
|
|
offset = k_input.shape[-2] - q_input.shape[-2] |
|
q_input = q_input + sinusoidal_emb(q_input, offset=offset) |
|
k_input = k_input + sinusoidal_emb(k_input) |
|
|
|
q = self.to_q(q_input) |
|
k = self.to_k(k_input) |
|
v = self.to_v(v_input) |
|
|
|
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v)) |
|
|
|
input_mask = None |
|
if any(map(exists, (mask, context_mask))): |
|
q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool()) |
|
k_mask = q_mask if not exists(context) else context_mask |
|
k_mask = default( |
|
k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool() |
|
) |
|
q_mask = rearrange(q_mask, "b i -> b () i ()") |
|
k_mask = rearrange(k_mask, "b j -> b () () j") |
|
input_mask = q_mask * k_mask |
|
|
|
if self.num_mem_kv > 0: |
|
mem_k, mem_v = map( |
|
lambda t: repeat(t, "h n d -> b h n d", b=b), (self.mem_k, self.mem_v) |
|
) |
|
k = torch.cat((mem_k, k), dim=-2) |
|
v = torch.cat((mem_v, v), dim=-2) |
|
if exists(input_mask): |
|
input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True) |
|
|
|
dots = einsum("b h i d, b h j d -> b h i j", q, k) * self.scale |
|
mask_value = max_neg_value(dots) |
|
|
|
if exists(prev_attn): |
|
dots = dots + prev_attn |
|
|
|
pre_softmax_attn = dots |
|
|
|
if talking_heads: |
|
dots = einsum( |
|
"b h i j, h k -> b k i j", dots, self.pre_softmax_proj |
|
).contiguous() |
|
|
|
if exists(rel_pos): |
|
dots = rel_pos(dots) |
|
|
|
if exists(input_mask): |
|
dots.masked_fill_(~input_mask, mask_value) |
|
del input_mask |
|
|
|
if self.causal: |
|
i, j = dots.shape[-2:] |
|
r = torch.arange(i, device=device) |
|
mask = rearrange(r, "i -> () () i ()") < rearrange(r, "j -> () () () j") |
|
mask = F.pad(mask, (j - i, 0), value=False) |
|
dots.masked_fill_(mask, mask_value) |
|
del mask |
|
|
|
if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]: |
|
top, _ = dots.topk(self.sparse_topk, dim=-1) |
|
vk = top[..., -1].unsqueeze(-1).expand_as(dots) |
|
mask = dots < vk |
|
dots.masked_fill_(mask, mask_value) |
|
del mask |
|
|
|
attn = self.attn_fn(dots, dim=-1) |
|
post_softmax_attn = attn |
|
|
|
attn = self.dropout(attn) |
|
|
|
if talking_heads: |
|
attn = einsum( |
|
"b h i j, h k -> b k i j", attn, self.post_softmax_proj |
|
).contiguous() |
|
|
|
out = einsum("b h i j, b h j d -> b h i d", attn, v) |
|
out = rearrange(out, "b h n d -> b n (h d)") |
|
|
|
intermediates = Intermediates( |
|
pre_softmax_attn=pre_softmax_attn, post_softmax_attn=post_softmax_attn |
|
) |
|
|
|
return self.to_out(out), intermediates |
|
|
|
|
|
class AttentionLayers(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
depth, |
|
heads=8, |
|
causal=False, |
|
cross_attend=False, |
|
only_cross=False, |
|
use_scalenorm=False, |
|
use_rmsnorm=False, |
|
use_rezero=False, |
|
rel_pos_num_buckets=32, |
|
rel_pos_max_distance=128, |
|
position_infused_attn=False, |
|
custom_layers=None, |
|
sandwich_coef=None, |
|
par_ratio=None, |
|
residual_attn=False, |
|
cross_residual_attn=False, |
|
macaron=False, |
|
pre_norm=True, |
|
gate_residual=False, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
ff_kwargs, kwargs = groupby_prefix_and_trim("ff_", kwargs) |
|
attn_kwargs, _ = groupby_prefix_and_trim("attn_", kwargs) |
|
|
|
dim_head = attn_kwargs.get("dim_head", DEFAULT_DIM_HEAD) |
|
|
|
self.dim = dim |
|
self.depth = depth |
|
self.layers = nn.ModuleList([]) |
|
|
|
self.has_pos_emb = position_infused_attn |
|
self.pia_pos_emb = ( |
|
FixedPositionalEmbedding(dim) if position_infused_attn else None |
|
) |
|
self.rotary_pos_emb = always(None) |
|
|
|
assert ( |
|
rel_pos_num_buckets <= rel_pos_max_distance |
|
), "number of relative position buckets must be less than the relative position max distance" |
|
self.rel_pos = None |
|
|
|
self.pre_norm = pre_norm |
|
|
|
self.residual_attn = residual_attn |
|
self.cross_residual_attn = cross_residual_attn |
|
|
|
norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm |
|
norm_class = RMSNorm if use_rmsnorm else norm_class |
|
norm_fn = partial(norm_class, dim) |
|
|
|
norm_fn = nn.Identity if use_rezero else norm_fn |
|
branch_fn = Rezero if use_rezero else None |
|
|
|
if cross_attend and not only_cross: |
|
default_block = ("a", "c", "f") |
|
elif cross_attend and only_cross: |
|
default_block = ("c", "f") |
|
else: |
|
default_block = ("a", "f") |
|
|
|
if macaron: |
|
default_block = ("f",) + default_block |
|
|
|
if exists(custom_layers): |
|
layer_types = custom_layers |
|
elif exists(par_ratio): |
|
par_depth = depth * len(default_block) |
|
assert 1 < par_ratio <= par_depth, "par ratio out of range" |
|
default_block = tuple(filter(not_equals("f"), default_block)) |
|
par_attn = par_depth // par_ratio |
|
depth_cut = ( |
|
par_depth * 2 // 3 |
|
) |
|
par_width = (depth_cut + depth_cut // par_attn) // par_attn |
|
assert ( |
|
len(default_block) <= par_width |
|
), "default block is too large for par_ratio" |
|
par_block = default_block + ("f",) * (par_width - len(default_block)) |
|
par_head = par_block * par_attn |
|
layer_types = par_head + ("f",) * (par_depth - len(par_head)) |
|
elif exists(sandwich_coef): |
|
assert ( |
|
sandwich_coef > 0 and sandwich_coef <= depth |
|
), "sandwich coefficient should be less than the depth" |
|
layer_types = ( |
|
("a",) * sandwich_coef |
|
+ default_block * (depth - sandwich_coef) |
|
+ ("f",) * sandwich_coef |
|
) |
|
else: |
|
layer_types = default_block * depth |
|
|
|
self.layer_types = layer_types |
|
self.num_attn_layers = len(list(filter(equals("a"), layer_types))) |
|
|
|
for layer_type in self.layer_types: |
|
if layer_type == "a": |
|
layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs) |
|
elif layer_type == "c": |
|
layer = Attention(dim, heads=heads, **attn_kwargs) |
|
elif layer_type == "f": |
|
layer = FeedForward(dim, **ff_kwargs) |
|
layer = layer if not macaron else Scale(0.5, layer) |
|
else: |
|
raise Exception(f"invalid layer type {layer_type}") |
|
|
|
if isinstance(layer, Attention) and exists(branch_fn): |
|
layer = branch_fn(layer) |
|
|
|
if gate_residual: |
|
residual_fn = GRUGating(dim) |
|
else: |
|
residual_fn = Residual() |
|
|
|
self.layers.append(nn.ModuleList([norm_fn(), layer, residual_fn])) |
|
|
|
def forward( |
|
self, |
|
x, |
|
context=None, |
|
mask=None, |
|
context_mask=None, |
|
mems=None, |
|
return_hiddens=False, |
|
): |
|
hiddens = [] |
|
intermediates = [] |
|
prev_attn = None |
|
prev_cross_attn = None |
|
|
|
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers |
|
|
|
for ind, (layer_type, (norm, block, residual_fn)) in enumerate( |
|
zip(self.layer_types, self.layers) |
|
): |
|
is_last = ind == (len(self.layers) - 1) |
|
|
|
if layer_type == "a": |
|
hiddens.append(x) |
|
layer_mem = mems.pop(0) |
|
|
|
residual = x |
|
|
|
if self.pre_norm: |
|
x = norm(x) |
|
|
|
if layer_type == "a": |
|
out, inter = block( |
|
x, |
|
mask=mask, |
|
sinusoidal_emb=self.pia_pos_emb, |
|
rel_pos=self.rel_pos, |
|
prev_attn=prev_attn, |
|
mem=layer_mem, |
|
) |
|
elif layer_type == "c": |
|
out, inter = block( |
|
x, |
|
context=context, |
|
mask=mask, |
|
context_mask=context_mask, |
|
prev_attn=prev_cross_attn, |
|
) |
|
elif layer_type == "f": |
|
out = block(x) |
|
|
|
x = residual_fn(out, residual) |
|
|
|
if layer_type in ("a", "c"): |
|
intermediates.append(inter) |
|
|
|
if layer_type == "a" and self.residual_attn: |
|
prev_attn = inter.pre_softmax_attn |
|
elif layer_type == "c" and self.cross_residual_attn: |
|
prev_cross_attn = inter.pre_softmax_attn |
|
|
|
if not self.pre_norm and not is_last: |
|
x = norm(x) |
|
|
|
if return_hiddens: |
|
intermediates = LayerIntermediates( |
|
hiddens=hiddens, attn_intermediates=intermediates |
|
) |
|
|
|
return x, intermediates |
|
|
|
return x |
|
|
|
|
|
class Encoder(AttentionLayers): |
|
def __init__(self, **kwargs): |
|
assert "causal" not in kwargs, "cannot set causality on encoder" |
|
super().__init__(causal=False, **kwargs) |
|
|
|
|
|
class TransformerWrapper(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
num_tokens, |
|
max_seq_len, |
|
attn_layers, |
|
emb_dim=None, |
|
max_mem_len=0.0, |
|
emb_dropout=0.0, |
|
num_memory_tokens=None, |
|
tie_embedding=False, |
|
use_pos_emb=True, |
|
): |
|
super().__init__() |
|
assert isinstance( |
|
attn_layers, AttentionLayers |
|
), "attention layers must be one of Encoder or Decoder" |
|
|
|
dim = attn_layers.dim |
|
emb_dim = default(emb_dim, dim) |
|
|
|
self.max_seq_len = max_seq_len |
|
self.max_mem_len = max_mem_len |
|
self.num_tokens = num_tokens |
|
|
|
self.token_emb = nn.Embedding(num_tokens, emb_dim) |
|
self.pos_emb = ( |
|
AbsolutePositionalEmbedding(emb_dim, max_seq_len) |
|
if (use_pos_emb and not attn_layers.has_pos_emb) |
|
else always(0) |
|
) |
|
self.emb_dropout = nn.Dropout(emb_dropout) |
|
|
|
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity() |
|
self.attn_layers = attn_layers |
|
self.norm = nn.LayerNorm(dim) |
|
|
|
self.init_() |
|
|
|
self.to_logits = ( |
|
nn.Linear(dim, num_tokens) |
|
if not tie_embedding |
|
else lambda t: t @ self.token_emb.weight.t() |
|
) |
|
|
|
|
|
num_memory_tokens = default(num_memory_tokens, 0) |
|
self.num_memory_tokens = num_memory_tokens |
|
if num_memory_tokens > 0: |
|
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) |
|
|
|
|
|
if hasattr(attn_layers, "num_memory_tokens"): |
|
attn_layers.num_memory_tokens = num_memory_tokens |
|
|
|
def init_(self): |
|
nn.init.normal_(self.token_emb.weight, std=0.02) |
|
|
|
def forward( |
|
self, |
|
x, |
|
return_embeddings=False, |
|
mask=None, |
|
return_mems=False, |
|
return_attn=False, |
|
mems=None, |
|
**kwargs, |
|
): |
|
b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens |
|
x = self.token_emb(x) |
|
x += self.pos_emb(x) |
|
x = self.emb_dropout(x) |
|
|
|
x = self.project_emb(x) |
|
|
|
if num_mem > 0: |
|
mem = repeat(self.memory_tokens, "n d -> b n d", b=b) |
|
x = torch.cat((mem, x), dim=1) |
|
|
|
|
|
if exists(mask): |
|
mask = F.pad(mask, (num_mem, 0), value=True) |
|
|
|
x, intermediates = self.attn_layers( |
|
x, mask=mask, mems=mems, return_hiddens=True, **kwargs |
|
) |
|
x = self.norm(x) |
|
|
|
mem, x = x[:, :num_mem], x[:, num_mem:] |
|
|
|
out = self.to_logits(x) if not return_embeddings else x |
|
|
|
if return_mems: |
|
hiddens = intermediates.hiddens |
|
new_mems = ( |
|
list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) |
|
if exists(mems) |
|
else hiddens |
|
) |
|
new_mems = list( |
|
map(lambda t: t[..., -self.max_mem_len :, :].detach(), new_mems) |
|
) |
|
return out, new_mems |
|
|
|
if return_attn: |
|
attn_maps = list( |
|
map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates) |
|
) |
|
return out, attn_maps |
|
|
|
return out |
|
|