|
from functools import partial |
|
import torch |
|
from torch import nn, einsum |
|
import torch.nn.functional as F |
|
from einops import rearrange, repeat |
|
|
|
try: |
|
import xformers |
|
import xformers.ops |
|
|
|
XFORMERS_IS_AVAILBLE = True |
|
except: |
|
XFORMERS_IS_AVAILBLE = False |
|
from lvdm.common import ( |
|
checkpoint, |
|
exists, |
|
default, |
|
) |
|
from lvdm.basics import ( |
|
zero_module, |
|
) |
|
|
|
|
|
class RelativePosition(nn.Module): |
|
"""https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py""" |
|
|
|
def __init__(self, num_units, max_relative_position): |
|
super().__init__() |
|
self.num_units = num_units |
|
self.max_relative_position = max_relative_position |
|
self.embeddings_table = nn.Parameter( |
|
torch.Tensor(max_relative_position * 2 + 1, num_units) |
|
) |
|
nn.init.xavier_uniform_(self.embeddings_table) |
|
|
|
def forward(self, length_q, length_k): |
|
device = self.embeddings_table.device |
|
range_vec_q = torch.arange(length_q, device=device) |
|
range_vec_k = torch.arange(length_k, device=device) |
|
distance_mat = range_vec_k[None, :] - range_vec_q[:, None] |
|
distance_mat_clipped = torch.clamp( |
|
distance_mat, -self.max_relative_position, self.max_relative_position |
|
) |
|
final_mat = distance_mat_clipped + self.max_relative_position |
|
final_mat = final_mat.long() |
|
embeddings = self.embeddings_table[final_mat] |
|
return embeddings |
|
|
|
|
|
class CrossAttention(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
query_dim, |
|
context_dim=None, |
|
heads=8, |
|
dim_head=64, |
|
dropout=0.0, |
|
relative_position=False, |
|
temporal_length=None, |
|
img_cross_attention=False, |
|
record_attn_probs=False, |
|
): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
context_dim = default(context_dim, query_dim) |
|
|
|
self.scale = dim_head**-0.5 |
|
self.heads = heads |
|
self.dim_head = dim_head |
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) |
|
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) |
|
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) |
|
self.to_out = nn.Sequential( |
|
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) |
|
) |
|
|
|
self.image_cross_attention_scale = 1.0 |
|
self.text_context_len = 200 |
|
self.img_cross_attention = img_cross_attention |
|
if self.img_cross_attention: |
|
self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False) |
|
self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False) |
|
|
|
self.relative_position = relative_position |
|
if self.relative_position: |
|
assert temporal_length is not None |
|
self.relative_position_k = RelativePosition( |
|
num_units=dim_head, max_relative_position=temporal_length |
|
) |
|
self.relative_position_v = RelativePosition( |
|
num_units=dim_head, max_relative_position=temporal_length |
|
) |
|
else: |
|
|
|
if XFORMERS_IS_AVAILBLE and temporal_length is None: |
|
self.forward = self.efficient_forward |
|
|
|
self.record_attn_probs = record_attn_probs |
|
self.attention_probs = None |
|
|
|
def forward(self, x, context=None, mask=None): |
|
h = self.heads |
|
|
|
q = self.to_q(x) |
|
context = default(context, x) |
|
|
|
if context is not None and self.img_cross_attention: |
|
context, context_img = ( |
|
context[:, : self.text_context_len, :], |
|
context[:, self.text_context_len :, :], |
|
) |
|
k = self.to_k(context) |
|
v = self.to_v(context) |
|
k_ip = self.to_k_ip(context_img) |
|
v_ip = self.to_v_ip(context_img) |
|
else: |
|
k = self.to_k(context) |
|
v = self.to_v(context) |
|
|
|
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v)) |
|
|
|
|
|
if self.record_attn_probs: |
|
attention_score = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale |
|
self.attention_probs = attention_score.softmax(dim=-1) |
|
|
|
sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale |
|
if self.relative_position: |
|
len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1] |
|
k2 = self.relative_position_k(len_q, len_k) |
|
sim2 = einsum("b t d, t s d -> b t s", q, k2) * self.scale |
|
sim += sim2 |
|
del k |
|
|
|
if exists(mask): |
|
|
|
max_neg_value = -torch.finfo(sim.dtype).max |
|
mask = repeat(mask, "b i j -> (b h) i j", h=h) |
|
sim.masked_fill_(~(mask > 0.5), max_neg_value) |
|
|
|
|
|
sim = sim.softmax(dim=-1) |
|
out = torch.einsum("b i j, b j d -> b i d", sim, v) |
|
if self.relative_position: |
|
v2 = self.relative_position_v(len_q, len_v) |
|
out2 = einsum("b t s, t s d -> b t d", sim, v2) |
|
out += out2 |
|
out = rearrange(out, "(b h) n d -> b n (h d)", h=h) |
|
|
|
|
|
if context is not None and self.img_cross_attention: |
|
k_ip, v_ip = map( |
|
lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (k_ip, v_ip) |
|
) |
|
sim_ip = torch.einsum("b i d, b j d -> b i j", q, k_ip) * self.scale |
|
del k_ip |
|
sim_ip = sim_ip.softmax(dim=-1) |
|
out_ip = torch.einsum("b i j, b j d -> b i d", sim_ip, v_ip) |
|
out_ip = rearrange(out_ip, "(b h) n d -> b n (h d)", h=h) |
|
out = out + self.image_cross_attention_scale * out_ip |
|
del q |
|
|
|
return self.to_out(out) |
|
|
|
def efficient_forward(self, x, context=None, mask=None): |
|
q = self.to_q(x) |
|
context = default(context, x) |
|
|
|
|
|
if context is not None and self.img_cross_attention: |
|
context, context_img = ( |
|
context[:, : self.text_context_len, :], |
|
context[:, self.text_context_len :, :], |
|
) |
|
k = self.to_k(context) |
|
v = self.to_v(context) |
|
k_ip = self.to_k_ip(context_img) |
|
v_ip = self.to_v_ip(context_img) |
|
else: |
|
k = self.to_k(context) |
|
v = self.to_v(context) |
|
|
|
b, _, _ = q.shape |
|
|
|
if self.record_attn_probs: |
|
q, k, v = map( |
|
lambda t: t.unsqueeze(3) |
|
.reshape(b, t.shape[1], self.heads, self.dim_head) |
|
.permute(0, 2, 1, 3) |
|
.reshape(b * self.heads, t.shape[1], self.dim_head) |
|
.contiguous(), |
|
(q, k, v), |
|
) |
|
attention_score = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale |
|
self.attention_probs = attention_score.softmax(dim=-1) |
|
else: |
|
q, k, v = map( |
|
lambda t: t.unsqueeze(3) |
|
.reshape(b, t.shape[1], self.heads, self.dim_head) |
|
.contiguous(), |
|
(q, k, v), |
|
) |
|
|
|
|
|
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None) |
|
if not self.record_attn_probs: |
|
out = out.permute(0, 2, 1, 3).reshape(b * self.heads, out.shape[1], self.dim_head) |
|
|
|
|
|
if context is not None and self.img_cross_attention: |
|
k_ip, v_ip = map( |
|
lambda t: t.unsqueeze(3) |
|
.reshape(b, t.shape[1], self.heads, self.dim_head) |
|
.permute(0, 2, 1, 3) |
|
.reshape(b * self.heads, t.shape[1], self.dim_head) |
|
.contiguous(), |
|
(k_ip, v_ip), |
|
) |
|
out_ip = xformers.ops.memory_efficient_attention( |
|
q, k_ip, v_ip, attn_bias=None, op=None |
|
) |
|
out_ip = ( |
|
out_ip.unsqueeze(0) |
|
.reshape(b, self.heads, out.shape[1], self.dim_head) |
|
.permute(0, 2, 1, 3) |
|
.reshape(b, out.shape[1], self.heads * self.dim_head) |
|
) |
|
|
|
if exists(mask): |
|
raise NotImplementedError |
|
out = ( |
|
out.unsqueeze(0) |
|
.reshape(b, self.heads, out.shape[1], self.dim_head) |
|
.permute(0, 2, 1, 3) |
|
.reshape(b, out.shape[1], self.heads * self.dim_head) |
|
) |
|
if context is not None and self.img_cross_attention: |
|
out = out + self.image_cross_attention_scale * out_ip |
|
return self.to_out(out) |
|
|
|
|
|
class BasicTransformerBlock(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
n_heads, |
|
d_head, |
|
dropout=0.0, |
|
context_dim=None, |
|
gated_ff=True, |
|
checkpoint=True, |
|
disable_self_attn=False, |
|
attention_cls=None, |
|
img_cross_attention=False, |
|
record_attn_probs=False, |
|
): |
|
super().__init__() |
|
attn_cls = CrossAttention if attention_cls is None else attention_cls |
|
self.disable_self_attn = disable_self_attn |
|
self.attn1 = attn_cls( |
|
query_dim=dim, |
|
heads=n_heads, |
|
dim_head=d_head, |
|
dropout=dropout, |
|
context_dim=context_dim if self.disable_self_attn else None, |
|
record_attn_probs=record_attn_probs, |
|
) |
|
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) |
|
self.attn2 = attn_cls( |
|
query_dim=dim, |
|
context_dim=context_dim, |
|
heads=n_heads, |
|
dim_head=d_head, |
|
dropout=dropout, |
|
img_cross_attention=img_cross_attention, |
|
) |
|
self.norm1 = nn.LayerNorm(dim) |
|
self.norm2 = nn.LayerNorm(dim) |
|
self.norm3 = nn.LayerNorm(dim) |
|
self.checkpoint = checkpoint |
|
|
|
def forward(self, x, context=None, mask=None): |
|
|
|
input_tuple = ( |
|
x, |
|
) |
|
if context is not None: |
|
input_tuple = (x, context) |
|
if mask is not None: |
|
forward_mask = partial(self._forward, mask=mask) |
|
return checkpoint(forward_mask, (x,), self.parameters(), self.checkpoint) |
|
if context is not None and mask is not None: |
|
input_tuple = (x, context, mask) |
|
return checkpoint( |
|
self._forward, input_tuple, self.parameters(), self.checkpoint |
|
) |
|
|
|
def _forward(self, x, context=None, mask=None): |
|
x = ( |
|
self.attn1( |
|
self.norm1(x), |
|
context=context if self.disable_self_attn else None, |
|
mask=mask, |
|
) |
|
+ x |
|
) |
|
x = self.attn2(self.norm2(x), context=context, mask=mask) + x |
|
x = self.ff(self.norm3(x)) + x |
|
return x |
|
|
|
|
|
class SpatialTransformer(nn.Module): |
|
""" |
|
Transformer block for image-like data in spatial axis. |
|
First, project the input (aka embedding) |
|
and reshape to b, t, d. |
|
Then apply standard transformer action. |
|
Finally, reshape to image |
|
NEW: use_linear for more efficiency instead of the 1x1 convs |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
n_heads, |
|
d_head, |
|
depth=1, |
|
dropout=0.0, |
|
context_dim=None, |
|
use_checkpoint=True, |
|
disable_self_attn=False, |
|
use_linear=False, |
|
img_cross_attention=False, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
inner_dim = n_heads * d_head |
|
self.norm = torch.nn.GroupNorm( |
|
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True |
|
) |
|
if not use_linear: |
|
self.proj_in = nn.Conv2d( |
|
in_channels, inner_dim, kernel_size=1, stride=1, padding=0 |
|
) |
|
else: |
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
inner_dim, |
|
n_heads, |
|
d_head, |
|
dropout=dropout, |
|
context_dim=context_dim, |
|
img_cross_attention=img_cross_attention, |
|
disable_self_attn=disable_self_attn, |
|
checkpoint=use_checkpoint, |
|
) |
|
for d in range(depth) |
|
] |
|
) |
|
if not use_linear: |
|
self.proj_out = zero_module( |
|
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) |
|
) |
|
else: |
|
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels)) |
|
self.use_linear = use_linear |
|
|
|
def forward(self, x, context=None): |
|
b, c, h, w = x.shape |
|
x_in = x |
|
x = self.norm(x) |
|
if not self.use_linear: |
|
x = self.proj_in(x) |
|
x = rearrange(x, "b c h w -> b (h w) c").contiguous() |
|
if self.use_linear: |
|
x = self.proj_in(x) |
|
for i, block in enumerate(self.transformer_blocks): |
|
x = block(x, context=context) |
|
if self.use_linear: |
|
x = self.proj_out(x) |
|
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous() |
|
if not self.use_linear: |
|
x = self.proj_out(x) |
|
return x + x_in |
|
|
|
|
|
class TemporalTransformer(nn.Module): |
|
""" |
|
Transformer block for image-like data in temporal axis. |
|
First, reshape to b, t, d. |
|
Then apply standard transformer action. |
|
Finally, reshape to image |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
n_heads, |
|
d_head, |
|
depth=1, |
|
dropout=0.0, |
|
context_dim=None, |
|
use_checkpoint=True, |
|
use_linear=False, |
|
only_self_att=True, |
|
causal_attention=False, |
|
relative_position=False, |
|
temporal_length=None, |
|
record_attn_probs=False, |
|
): |
|
super().__init__() |
|
self.only_self_att = only_self_att |
|
self.relative_position = relative_position |
|
self.causal_attention = causal_attention |
|
self.in_channels = in_channels |
|
inner_dim = n_heads * d_head |
|
self.norm = torch.nn.GroupNorm( |
|
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True |
|
) |
|
self.proj_in = nn.Conv1d( |
|
in_channels, inner_dim, kernel_size=1, stride=1, padding=0 |
|
) |
|
if not use_linear: |
|
self.proj_in = nn.Conv1d( |
|
in_channels, inner_dim, kernel_size=1, stride=1, padding=0 |
|
) |
|
else: |
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
|
|
if relative_position: |
|
assert temporal_length is not None |
|
attention_cls = partial( |
|
CrossAttention, relative_position=True, temporal_length=temporal_length |
|
) |
|
else: |
|
attention_cls = None |
|
if self.causal_attention: |
|
assert temporal_length is not None |
|
self.mask = torch.tril(torch.ones([1, temporal_length, temporal_length])) |
|
|
|
if self.only_self_att: |
|
context_dim = None |
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
inner_dim, |
|
n_heads, |
|
d_head, |
|
dropout=dropout, |
|
context_dim=context_dim, |
|
attention_cls=attention_cls, |
|
checkpoint=use_checkpoint, |
|
record_attn_probs=record_attn_probs, |
|
) |
|
for d in range(depth) |
|
] |
|
) |
|
if not use_linear: |
|
self.proj_out = zero_module( |
|
nn.Conv1d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) |
|
) |
|
else: |
|
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels)) |
|
self.use_linear = use_linear |
|
|
|
def forward(self, x, context=None): |
|
b, c, t, h, w = x.shape |
|
x_in = x |
|
x = self.norm(x) |
|
x = rearrange(x, "b c t h w -> (b h w) c t").contiguous() |
|
if not self.use_linear: |
|
x = self.proj_in(x) |
|
x = rearrange(x, "bhw c t -> bhw t c").contiguous() |
|
if self.use_linear: |
|
x = self.proj_in(x) |
|
|
|
if self.causal_attention: |
|
mask = self.mask.to(x.device) |
|
mask = repeat(mask, "l i j -> (l bhw) i j", bhw=b * h * w) |
|
else: |
|
mask = None |
|
|
|
if self.only_self_att: |
|
|
|
for i, block in enumerate(self.transformer_blocks): |
|
x = block(x, mask=mask) |
|
x = rearrange(x, "(b hw) t c -> b hw t c", b=b).contiguous() |
|
else: |
|
x = rearrange(x, "(b hw) t c -> b hw t c", b=b).contiguous() |
|
context = rearrange(context, "(b t) l con -> b t l con", t=t).contiguous() |
|
for i, block in enumerate(self.transformer_blocks): |
|
|
|
for j in range(b): |
|
context_j = repeat( |
|
context[j], "t l con -> (t r) l con", r=(h * w) // t, t=t |
|
).contiguous() |
|
|
|
x[j] = block(x[j], context=context_j) |
|
|
|
if self.use_linear: |
|
x = self.proj_out(x) |
|
x = rearrange(x, "b (h w) t c -> b c t h w", h=h, w=w).contiguous() |
|
if not self.use_linear: |
|
x = rearrange(x, "b hw t c -> (b hw) c t").contiguous() |
|
x = self.proj_out(x) |
|
x = rearrange(x, "(b h w) c t -> b c t h w", b=b, h=h, w=w).contiguous() |
|
|
|
return x + x_in |
|
|
|
|
|
class GEGLU(nn.Module): |
|
def __init__(self, dim_in, dim_out): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out * 2) |
|
|
|
def forward(self, x): |
|
x, gate = self.proj(x).chunk(2, dim=-1) |
|
return x * F.gelu(gate) |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): |
|
super().__init__() |
|
inner_dim = int(dim * mult) |
|
dim_out = default(dim_out, dim) |
|
project_in = ( |
|
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) |
|
if not glu |
|
else GEGLU(dim, inner_dim) |
|
) |
|
|
|
self.net = nn.Sequential( |
|
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) |
|
) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
|
|
class LinearAttention(nn.Module): |
|
def __init__(self, dim, heads=4, dim_head=32): |
|
super().__init__() |
|
self.heads = heads |
|
hidden_dim = dim_head * heads |
|
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) |
|
self.to_out = nn.Conv2d(hidden_dim, dim, 1) |
|
|
|
def forward(self, x): |
|
b, c, h, w = x.shape |
|
qkv = self.to_qkv(x) |
|
q, k, v = rearrange( |
|
qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3 |
|
) |
|
k = k.softmax(dim=-1) |
|
context = torch.einsum("bhdn,bhen->bhde", k, v) |
|
out = torch.einsum("bhde,bhdn->bhen", context, q) |
|
out = rearrange( |
|
out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w |
|
) |
|
return self.to_out(out) |
|
|
|
|
|
class SpatialSelfAttention(nn.Module): |
|
def __init__(self, in_channels): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
|
|
self.norm = torch.nn.GroupNorm( |
|
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True |
|
) |
|
self.q = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.k = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.v = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.proj_out = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
|
|
def forward(self, x): |
|
h_ = x |
|
h_ = self.norm(h_) |
|
q = self.q(h_) |
|
k = self.k(h_) |
|
v = self.v(h_) |
|
|
|
|
|
b, c, h, w = q.shape |
|
q = rearrange(q, "b c h w -> b (h w) c") |
|
k = rearrange(k, "b c h w -> b c (h w)") |
|
w_ = torch.einsum("bij,bjk->bik", q, k) |
|
|
|
w_ = w_ * (int(c) ** (-0.5)) |
|
w_ = torch.nn.functional.softmax(w_, dim=2) |
|
|
|
|
|
v = rearrange(v, "b c h w -> b c (h w)") |
|
w_ = rearrange(w_, "b i j -> b j i") |
|
h_ = torch.einsum("bij,bjk->bik", v, w_) |
|
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h) |
|
h_ = self.proj_out(h_) |
|
|
|
return x + h_ |
|
|