|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch.nn as nn |
|
from utils.utils import instantiate_from_config |
|
|
|
|
|
def disabled_train(self, mode=True): |
|
"""Overwrite model.train with this function to make sure train/eval mode |
|
does not change anymore.""" |
|
return self |
|
|
|
|
|
def zero_module(module): |
|
""" |
|
Zero out the parameters of a module and return it. |
|
""" |
|
for p in module.parameters(): |
|
p.detach().zero_() |
|
return module |
|
|
|
|
|
def scale_module(module, scale): |
|
""" |
|
Scale the parameters of a module and return it. |
|
""" |
|
for p in module.parameters(): |
|
p.detach().mul_(scale) |
|
return module |
|
|
|
|
|
def conv_nd(dims, *args, **kwargs): |
|
""" |
|
Create a 1D, 2D, or 3D convolution module. |
|
""" |
|
if dims == 1: |
|
return nn.Conv1d(*args, **kwargs) |
|
elif dims == 2: |
|
return nn.Conv2d(*args, **kwargs) |
|
elif dims == 3: |
|
return nn.Conv3d(*args, **kwargs) |
|
raise ValueError(f"unsupported dimensions: {dims}") |
|
|
|
|
|
def linear(*args, **kwargs): |
|
""" |
|
Create a linear module. |
|
""" |
|
return nn.Linear(*args, **kwargs) |
|
|
|
|
|
def avg_pool_nd(dims, *args, **kwargs): |
|
""" |
|
Create a 1D, 2D, or 3D average pooling module. |
|
""" |
|
if dims == 1: |
|
return nn.AvgPool1d(*args, **kwargs) |
|
elif dims == 2: |
|
return nn.AvgPool2d(*args, **kwargs) |
|
elif dims == 3: |
|
return nn.AvgPool3d(*args, **kwargs) |
|
raise ValueError(f"unsupported dimensions: {dims}") |
|
|
|
|
|
def nonlinearity(type="silu"): |
|
if type == "silu": |
|
return nn.SiLU() |
|
elif type == "leaky_relu": |
|
return nn.LeakyReLU() |
|
|
|
|
|
class GroupNormSpecific(nn.GroupNorm): |
|
def forward(self, x): |
|
return super().forward(x).type(x.dtype) |
|
|
|
|
|
def normalization(channels, num_groups=32): |
|
""" |
|
Make a standard normalization layer. |
|
:param channels: number of input channels. |
|
:return: an nn.Module for normalization. |
|
""" |
|
return GroupNormSpecific(num_groups, channels) |
|
|
|
|
|
class HybridConditioner(nn.Module): |
|
|
|
def __init__(self, c_concat_config, c_crossattn_config): |
|
super().__init__() |
|
self.concat_conditioner = instantiate_from_config(c_concat_config) |
|
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config) |
|
|
|
def forward(self, c_concat, c_crossattn): |
|
c_concat = self.concat_conditioner(c_concat) |
|
c_crossattn = self.crossattn_conditioner(c_crossattn) |
|
return {"c_concat": [c_concat], "c_crossattn": [c_crossattn]} |
|
|