Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- coding:utf-8 -*- | |
# Copyright (c) Megvii, Inc. and its affiliates. | |
import cv2 | |
import numpy as np | |
from yolox.utils import adjust_box_anns | |
import random | |
from ..data_augment import box_candidates, random_perspective, augment_hsv | |
from .datasets_wrapper import Dataset | |
def get_mosaic_coordinate(mosaic_image, mosaic_index, xc, yc, w, h, input_h, input_w): | |
# TODO update doc | |
# index0 to top left part of image | |
if mosaic_index == 0: | |
x1, y1, x2, y2 = max(xc - w, 0), max(yc - h, 0), xc, yc | |
small_coord = w - (x2 - x1), h - (y2 - y1), w, h | |
# index1 to top right part of image | |
elif mosaic_index == 1: | |
x1, y1, x2, y2 = xc, max(yc - h, 0), min(xc + w, input_w * 2), yc | |
small_coord = 0, h - (y2 - y1), min(w, x2 - x1), h | |
# index2 to bottom left part of image | |
elif mosaic_index == 2: | |
x1, y1, x2, y2 = max(xc - w, 0), yc, xc, min(input_h * 2, yc + h) | |
small_coord = w - (x2 - x1), 0, w, min(y2 - y1, h) | |
# index2 to bottom right part of image | |
elif mosaic_index == 3: | |
x1, y1, x2, y2 = xc, yc, min(xc + w, input_w * 2), min(input_h * 2, yc + h) # noqa | |
small_coord = 0, 0, min(w, x2 - x1), min(y2 - y1, h) | |
return (x1, y1, x2, y2), small_coord | |
class MosaicDetection(Dataset): | |
"""Detection dataset wrapper that performs mixup for normal dataset.""" | |
def __init__( | |
self, dataset, img_size, mosaic=True, preproc=None, | |
degrees=10.0, translate=0.1, scale=(0.5, 1.5), mscale=(0.5, 1.5), | |
shear=2.0, perspective=0.0, enable_mixup=True, *args | |
): | |
""" | |
Args: | |
dataset(Dataset) : Pytorch dataset object. | |
img_size (tuple): | |
mosaic (bool): enable mosaic augmentation or not. | |
preproc (func): | |
degrees (float): | |
translate (float): | |
scale (tuple): | |
mscale (tuple): | |
shear (float): | |
perspective (float): | |
enable_mixup (bool): | |
*args(tuple) : Additional arguments for mixup random sampler. | |
""" | |
super().__init__(img_size, mosaic=mosaic) | |
self._dataset = dataset | |
self.preproc = preproc | |
self.degrees = degrees | |
self.translate = translate | |
self.scale = scale | |
self.shear = shear | |
self.perspective = perspective | |
self.mixup_scale = mscale | |
self.enable_mosaic = mosaic | |
self.enable_mixup = enable_mixup | |
def __len__(self): | |
return len(self._dataset) | |
def __getitem__(self, idx): | |
if self.enable_mosaic: | |
mosaic_labels = [] | |
input_dim = self._dataset.input_dim | |
input_h, input_w = input_dim[0], input_dim[1] | |
# yc, xc = s, s # mosaic center x, y | |
yc = int(random.uniform(0.5 * input_h, 1.5 * input_h)) | |
xc = int(random.uniform(0.5 * input_w, 1.5 * input_w)) | |
# 3 additional image indices | |
indices = [idx] + [random.randint(0, len(self._dataset) - 1) for _ in range(3)] | |
for i_mosaic, index in enumerate(indices): | |
img, _labels, _, _ = self._dataset.pull_item(index) | |
h0, w0 = img.shape[:2] # orig hw | |
scale = min(1. * input_h / h0, 1. * input_w / w0) | |
img = cv2.resize( | |
img, (int(w0 * scale), int(h0 * scale)), interpolation=cv2.INTER_LINEAR | |
) | |
# generate output mosaic image | |
(h, w, c) = img.shape[:3] | |
if i_mosaic == 0: | |
mosaic_img = np.full((input_h * 2, input_w * 2, c), 114, dtype=np.uint8) | |
# suffix l means large image, while s means small image in mosaic aug. | |
(l_x1, l_y1, l_x2, l_y2), (s_x1, s_y1, s_x2, s_y2) = get_mosaic_coordinate( | |
mosaic_img, i_mosaic, xc, yc, w, h, input_h, input_w | |
) | |
mosaic_img[l_y1:l_y2, l_x1:l_x2] = img[s_y1:s_y2, s_x1:s_x2] | |
padw, padh = l_x1 - s_x1, l_y1 - s_y1 | |
labels = _labels.copy() | |
# Normalized xywh to pixel xyxy format | |
if _labels.size > 0: | |
labels[:, 0] = scale * _labels[:, 0] + padw | |
labels[:, 1] = scale * _labels[:, 1] + padh | |
labels[:, 2] = scale * _labels[:, 2] + padw | |
labels[:, 3] = scale * _labels[:, 3] + padh | |
mosaic_labels.append(labels) | |
if len(mosaic_labels): | |
mosaic_labels = np.concatenate(mosaic_labels, 0) | |
''' | |
np.clip(mosaic_labels[:, 0], 0, 2 * input_w, out=mosaic_labels[:, 0]) | |
np.clip(mosaic_labels[:, 1], 0, 2 * input_h, out=mosaic_labels[:, 1]) | |
np.clip(mosaic_labels[:, 2], 0, 2 * input_w, out=mosaic_labels[:, 2]) | |
np.clip(mosaic_labels[:, 3], 0, 2 * input_h, out=mosaic_labels[:, 3]) | |
''' | |
mosaic_labels = mosaic_labels[mosaic_labels[:, 0] < 2 * input_w] | |
mosaic_labels = mosaic_labels[mosaic_labels[:, 2] > 0] | |
mosaic_labels = mosaic_labels[mosaic_labels[:, 1] < 2 * input_h] | |
mosaic_labels = mosaic_labels[mosaic_labels[:, 3] > 0] | |
#augment_hsv(mosaic_img) | |
mosaic_img, mosaic_labels = random_perspective( | |
mosaic_img, | |
mosaic_labels, | |
degrees=self.degrees, | |
translate=self.translate, | |
scale=self.scale, | |
shear=self.shear, | |
perspective=self.perspective, | |
border=[-input_h // 2, -input_w // 2], | |
) # border to remove | |
# ----------------------------------------------------------------- | |
# CopyPaste: https://arxiv.org/abs/2012.07177 | |
# ----------------------------------------------------------------- | |
if self.enable_mixup and not len(mosaic_labels) == 0: | |
mosaic_img, mosaic_labels = self.mixup(mosaic_img, mosaic_labels, self.input_dim) | |
mix_img, padded_labels = self.preproc(mosaic_img, mosaic_labels, self.input_dim) | |
img_info = (mix_img.shape[1], mix_img.shape[0]) | |
return mix_img, padded_labels, img_info, np.array([idx]) | |
else: | |
self._dataset._input_dim = self.input_dim | |
img, label, img_info, id_ = self._dataset.pull_item(idx) | |
img, label = self.preproc(img, label, self.input_dim) | |
return img, label, img_info, id_ | |
def mixup(self, origin_img, origin_labels, input_dim): | |
jit_factor = random.uniform(*self.mixup_scale) | |
FLIP = random.uniform(0, 1) > 0.5 | |
cp_labels = [] | |
while len(cp_labels) == 0: | |
cp_index = random.randint(0, self.__len__() - 1) | |
cp_labels = self._dataset.load_anno(cp_index) | |
img, cp_labels, _, _ = self._dataset.pull_item(cp_index) | |
if len(img.shape) == 3: | |
cp_img = np.ones((input_dim[0], input_dim[1], 3)) * 114.0 | |
else: | |
cp_img = np.ones(input_dim) * 114.0 | |
cp_scale_ratio = min(input_dim[0] / img.shape[0], input_dim[1] / img.shape[1]) | |
resized_img = cv2.resize( | |
img, | |
(int(img.shape[1] * cp_scale_ratio), int(img.shape[0] * cp_scale_ratio)), | |
interpolation=cv2.INTER_LINEAR, | |
).astype(np.float32) | |
cp_img[ | |
: int(img.shape[0] * cp_scale_ratio), : int(img.shape[1] * cp_scale_ratio) | |
] = resized_img | |
cp_img = cv2.resize( | |
cp_img, | |
(int(cp_img.shape[1] * jit_factor), int(cp_img.shape[0] * jit_factor)), | |
) | |
cp_scale_ratio *= jit_factor | |
if FLIP: | |
cp_img = cp_img[:, ::-1, :] | |
origin_h, origin_w = cp_img.shape[:2] | |
target_h, target_w = origin_img.shape[:2] | |
padded_img = np.zeros( | |
(max(origin_h, target_h), max(origin_w, target_w), 3) | |
).astype(np.uint8) | |
padded_img[:origin_h, :origin_w] = cp_img | |
x_offset, y_offset = 0, 0 | |
if padded_img.shape[0] > target_h: | |
y_offset = random.randint(0, padded_img.shape[0] - target_h - 1) | |
if padded_img.shape[1] > target_w: | |
x_offset = random.randint(0, padded_img.shape[1] - target_w - 1) | |
padded_cropped_img = padded_img[ | |
y_offset: y_offset + target_h, x_offset: x_offset + target_w | |
] | |
cp_bboxes_origin_np = adjust_box_anns( | |
cp_labels[:, :4].copy(), cp_scale_ratio, 0, 0, origin_w, origin_h | |
) | |
if FLIP: | |
cp_bboxes_origin_np[:, 0::2] = ( | |
origin_w - cp_bboxes_origin_np[:, 0::2][:, ::-1] | |
) | |
cp_bboxes_transformed_np = cp_bboxes_origin_np.copy() | |
''' | |
cp_bboxes_transformed_np[:, 0::2] = np.clip( | |
cp_bboxes_transformed_np[:, 0::2] - x_offset, 0, target_w | |
) | |
cp_bboxes_transformed_np[:, 1::2] = np.clip( | |
cp_bboxes_transformed_np[:, 1::2] - y_offset, 0, target_h | |
) | |
''' | |
cp_bboxes_transformed_np[:, 0::2] = cp_bboxes_transformed_np[:, 0::2] - x_offset | |
cp_bboxes_transformed_np[:, 1::2] = cp_bboxes_transformed_np[:, 1::2] - y_offset | |
keep_list = box_candidates(cp_bboxes_origin_np.T, cp_bboxes_transformed_np.T, 5) | |
if keep_list.sum() >= 1.0: | |
cls_labels = cp_labels[keep_list, 4:5].copy() | |
id_labels = cp_labels[keep_list, 5:6].copy() | |
box_labels = cp_bboxes_transformed_np[keep_list] | |
labels = np.hstack((box_labels, cls_labels, id_labels)) | |
# remove outside bbox | |
labels = labels[labels[:, 0] < target_w] | |
labels = labels[labels[:, 2] > 0] | |
labels = labels[labels[:, 1] < target_h] | |
labels = labels[labels[:, 3] > 0] | |
origin_labels = np.vstack((origin_labels, labels)) | |
origin_img = origin_img.astype(np.float32) | |
origin_img = 0.5 * origin_img + 0.5 * padded_cropped_img.astype(np.float32) | |
return origin_img, origin_labels | |