Spaces:
Build error
Build error
#!/usr/bin/env python | |
from __future__ import annotations | |
import argparse | |
import os | |
import pathlib | |
import subprocess | |
import tarfile | |
if os.getenv('SYSTEM') == 'spaces': | |
import mim | |
mim.uninstall('mmcv-full', confirm_yes=True) | |
mim.install('mmcv-full==1.5.2', is_yes=True) | |
# mim.uninstall('mmdet', confirm_yes=True) | |
# mim.install('mmdet==2.20.0', is_yes=True) | |
subprocess.call('pip uninstall -y opencv-python'.split()) | |
subprocess.call('pip uninstall -y opencv-python-headless'.split()) | |
subprocess.call('pip install opencv-python-headless==4.5.5.64'.split()) | |
subprocess.call('conda install -c conda-forge pycocotools'.split()) | |
subprocess.call('pip install detectron2==0.5 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.7/index.html'.split()) | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
from mmdet.apis import init_detector, inference_detector | |
from utils import show_result | |
import mmcv | |
from mmcv import Config | |
import os.path as osp | |
DESCRIPTION = '''# OpenPSG | |
This is an official demo for [OpenPSG](https://github.com/Jingkang50/OpenPSG). | |
<img id="overview" alt="overview" src="https://camo.githubusercontent.com/880346b66831a8212074787ba9a2301b4d700bd8f765ca11e4845ac0ab34c230/68747470733a2f2f6c6976652e737461746963666c69636b722e636f6d2f36353533352f35323139333837393637375f373531613465306237395f6b2e6a7067" /> | |
''' | |
FOOTER = '<img id="visitor-badge" src="https://visitor-badge.glitch.me/badge?page_id=c-liangyu.openpsg" alt="visitor badge" />' | |
def parse_args() -> argparse.Namespace: | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--device', type=str, default='cpu') | |
parser.add_argument('--theme', type=str) | |
parser.add_argument('--share', action='store_true') | |
parser.add_argument('--port', type=int) | |
parser.add_argument('--disable-queue', | |
dest='enable_queue', | |
action='store_false') | |
return parser.parse_args() | |
def update_input_image(image: np.ndarray) -> dict: | |
if image is None: | |
return gr.Image.update(value=None) | |
scale = 1500 / max(image.shape[:2]) | |
if scale < 1: | |
image = cv2.resize(image, None, fx=scale, fy=scale) | |
return gr.Image.update(value=image) | |
def set_example_image(example: list) -> dict: | |
return gr.Image.update(value=example[0]) | |
def infer(model, input_image, num_rel): | |
result = inference_detector(model, input_image) | |
return show_result(input_image, | |
result, | |
is_one_stage=True, | |
num_rel=num_rel, | |
show=True | |
) | |
def main(): | |
args = parse_args() | |
model_ckt ='OpenPSG/checkpoints/epoch_60.pth' | |
cfg = Config.fromfile('OpenPSG/configs/psgtr/psgtr_r50_psg_inference.py') | |
model = init_detector(cfg, model_ckt, device=args.device) | |
with gr.Blocks(theme=args.theme, css='style.css') as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
input_image = gr.Image(label='Input Image', type='numpy') | |
with gr.Group(): | |
with gr.Row(): | |
num_rel = gr.Slider( | |
5, | |
100, | |
step=5, | |
value=20, | |
label='Number of Relations') | |
with gr.Row(): | |
run_button = gr.Button(value='Run') | |
# prediction_results = gr.Variable() | |
with gr.Column(): | |
with gr.Row(): | |
# visualization = gr.Image(label='Result', type='numpy') | |
result = gr.Gallery(label='Result', type='numpy') | |
with gr.Row(): | |
paths = sorted(pathlib.Path('images').rglob('*.jpg')) | |
example_images = gr.Dataset(components=[input_image], | |
samples=[[path.as_posix()] | |
for path in paths]) | |
gr.Markdown(FOOTER) | |
input_image.change(fn=update_input_image, | |
inputs=input_image, | |
outputs=input_image) | |
run_button.click(fn=infer, | |
inputs=[ | |
model, input_image | |
], | |
outputs=result) | |
example_images.click(fn=set_example_image, | |
inputs=example_images, | |
outputs=input_image) | |
demo.launch( | |
enable_queue=args.enable_queue, | |
server_port=args.port, | |
share=args.share, | |
) | |
if __name__ == '__main__': | |
main() | |