Spaces:
Build error
Build error
File size: 6,321 Bytes
c7f0cc1 57fb51b 0ba37f3 c7f0cc1 0ba37f3 3c2f5f5 b798673 8c0e599 581e1e5 c7f0cc1 1e03b30 c7f0cc1 e2d5627 c7f0cc1 2205679 2a136c4 7d40567 c7f0cc1 678d96b 7d40567 678d96b 7c82366 678d96b e4280cf 470f311 00d78be c7f0cc1 00d78be c7f0cc1 0ba37f3 c7f0cc1 0ba37f3 e2d5627 0ba37f3 e2d5627 c7f0cc1 0ba37f3 c7f0cc1 e2d5627 c7f0cc1 0ba37f3 c7f0cc1 0ba37f3 c7f0cc1 e2d5627 c7f0cc1 1e03b30 c7f0cc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
from __future__ import annotations
import argparse
import os
import pathlib
import subprocess
if os.getenv('SYSTEM') == 'spaces':
import mim
mim.uninstall('mmcv-full', confirm_yes=True)
mim.install('mmcv-full==1.4.3', is_yes=True)
subprocess.call('pip uninstall -y opencv-python'.split())
subprocess.call('pip uninstall -y opencv-python-headless'.split())
subprocess.call('pip install opencv-python-headless==4.5.5.64'.split())
subprocess.call('pip install pycocotools'.split())
subprocess.call("pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html".split())
# subprocess.call("pip install git+https://github.com/c-liangyu/OpenPSG.git@dev_apis".split())
subprocess.call("pip install git+https://github.com/Jingkang50/OpenPSG.git@hugging_face_demo".split())
subprocess.call("pip install git+https://github.com/cocodataset/panopticapi.git".split())
import cv2
import gradio as gr
import numpy as np
from mmdet.apis import init_detector, inference_detector
from utils import make_gif, show_result
from mmcv import Config
import openpsg
DESCRIPTION = '''# ECCV'22 | Panoptic Scene Graph Generation
π π π This is an official demo for our ECCV'22 paper: [Panoptic Scene Graph Generation](https://psgdataset.org/). Please star our [codebase](https://github.com/Jingkang50/OpenPSG) if you find it useful / interesting.
π’ π’ π’ **News:** The PSG Challenge (prize pool π€ **US$150K** π€) is now available on [International Algorithm Case Competition](https://www.cvmart.net/race/10349/base?organic_url=https%3A%2F%2Fhf.space%2F) and [ECCV'22 SenseHuman Workshop](https://sense-human.github.io/)!
π π π Check out the [news section](https://github.com/Jingkang50/OpenPSG#updates) in our [GitHub repo](https://github.com/Jingkang50/OpenPSG) for more details. Everyone around the world is welcome to participant and explore the comprehensive scene understanding!
π― π― π― The PSG Development Team is currently focusing on **(1) π§ββοΈ Next-Generation PSG Models**, **(2) π΅οΈββοΈ Relation-Aware Visual Reasoning from PSG Models**, and **(3) π¨ Relation-Aware Image Generation from Scene Graph and Caption**. If you are also interested in the related researches, please reach out and contact us!
Inference takes 10-30 seconds per image. The model is PSGTR (60 epochs). You can upload your own pictures or select the examples below to play.
The demo will output a GIF to show the first 10 "subject-verb-object" relations, with the subject and object being grounded by segmentation masks.
A gallery is attached below for reference.
'''
FOOTER = '<img id="visitor-badge" src="https://visitor-badge.glitch.me/badge?page_id=c-liangyu.openpsg" alt="visitor badge" />'
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
return parser.parse_args()
def update_input_image(image: np.ndarray) -> dict:
if image is None:
return gr.Image.update(value=None)
scale = 800 / max(image.shape[:2])
if scale < 1:
image = cv2.resize(image, None, fx=scale, fy=scale)
return gr.Image.update(value=image)
def set_example_image(example: list) -> dict:
return gr.Image.update(value=example[0])
class Model:
def __init__(self, model_name, device='cpu'):
model_ckt ='OpenPSG/checkpoints/epoch_60.pth'
cfg = Config.fromfile('OpenPSG/configs/psgtr/psgtr_r50_psg_inference.py')
self.model = init_detector(cfg, model_ckt, device=device)
def infer(self, input_image, num_rel):
result = inference_detector(self.model, input_image)
displays = show_result(input_image,
result,
is_one_stage=True,
num_rel=num_rel,
show=True
)
gif = make_gif(displays[:10] if len(displays) > 10 else displays)
return gif, displays
def main():
args = parse_args()
with gr.Blocks(theme=args.theme, css='style.css') as demo:
model = Model('psgtr', device=args.device)
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(label='Input Image', type='numpy')
with gr.Group():
with gr.Row():
num_rel = gr.Slider(
5,
100,
step=5,
value=20,
label='Number of Relations')
with gr.Row():
run_button = gr.Button(value='Run')
with gr.Column():
with gr.Row():
gif = gr.Image(label='Top Relations')
with gr.Row():
displays = gr.Gallery(label='PSGTR Result', type='numpy')
with gr.Row():
paths = sorted(pathlib.Path('images').rglob('*.jpg'))
example_images = gr.Dataset(components=[input_image],
samples=[[path.as_posix()]
for path in paths])
gr.Markdown(FOOTER)
input_image.change(fn=update_input_image,
inputs=input_image,
outputs=input_image)
run_button.click(fn=model.infer,
inputs=[
input_image, num_rel
],
outputs=[gif, displays])
example_images.click(fn=set_example_image,
inputs=example_images,
outputs=input_image)
demo.launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()
|