|
import argparse |
|
import itertools |
|
import math |
|
import os |
|
import random |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch.utils.data import Dataset |
|
|
|
import PIL |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import set_seed |
|
from diffusers import AutoencoderKL, DDPMScheduler, PNDMScheduler, StableDiffusionPipeline, UNet2DConditionModel |
|
from diffusers.optimization import get_scheduler |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker |
|
from huggingface_hub import HfFolder, Repository, whoami |
|
from PIL import Image |
|
from torchvision import transforms |
|
from tqdm.auto import tqdm |
|
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer |
|
import gc |
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def save_progress(text_encoder, placeholder_token_id, accelerator, args): |
|
logger.info("Saving embeddings") |
|
learned_embeds = accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[placeholder_token_id] |
|
learned_embeds_dict = {args.placeholder_token: learned_embeds.detach().cpu()} |
|
torch.save(learned_embeds_dict, os.path.join(args.output_dir, "learned_embeds.bin")) |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument( |
|
"--save_steps", |
|
type=int, |
|
default=500, |
|
help="Save learned_embeds.bin every X updates steps.", |
|
) |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
default=None, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--tokenizer_name", |
|
type=str, |
|
default=None, |
|
help="Pretrained tokenizer name or path if not the same as model_name", |
|
) |
|
parser.add_argument( |
|
"--train_data_dir", type=str, default=None, help="A folder containing the training data." |
|
) |
|
parser.add_argument( |
|
"--placeholder_token", |
|
type=str, |
|
default=None, |
|
help="A token to use as a placeholder for the concept.", |
|
) |
|
parser.add_argument( |
|
"--initializer_token", type=str, default=None, help="A token to use as initializer word." |
|
) |
|
parser.add_argument("--learnable_property", type=str, default="object", help="Choose between 'object' and 'style'") |
|
parser.add_argument("--repeats", type=int, default=100, help="How many times to repeat the training data.") |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="text-inversion-model", |
|
help="The output directory where the model predictions and checkpoints will be written.", |
|
) |
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=512, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution" |
|
) |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=100) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=5000, |
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", |
|
type=int, |
|
default=1, |
|
help="Number of updates steps to accumulate before performing a backward/update pass.", |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=1e-4, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
default=True, |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--logging_dir", |
|
type=str, |
|
default="logs", |
|
help=( |
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" |
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." |
|
), |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default="no", |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose" |
|
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." |
|
"and an Nvidia Ampere GPU." |
|
), |
|
) |
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
|
|
args = parser.parse_args() |
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
''' |
|
if args.train_data_dir is None: |
|
raise ValueError("You must specify a train data directory.") |
|
''' |
|
|
|
return args |
|
|
|
|
|
imagenet_templates_small = [ |
|
"a photo of a {}", |
|
"a rendering of a {}", |
|
"a cropped photo of the {}", |
|
"the photo of a {}", |
|
"a photo of a clean {}", |
|
"a photo of a dirty {}", |
|
"a dark photo of the {}", |
|
"a photo of my {}", |
|
"a photo of the cool {}", |
|
"a close-up photo of a {}", |
|
"a bright photo of the {}", |
|
"a cropped photo of a {}", |
|
"a photo of the {}", |
|
"a good photo of the {}", |
|
"a photo of one {}", |
|
"a close-up photo of the {}", |
|
"a rendition of the {}", |
|
"a photo of the clean {}", |
|
"a rendition of a {}", |
|
"a photo of a nice {}", |
|
"a good photo of a {}", |
|
"a photo of the nice {}", |
|
"a photo of the small {}", |
|
"a photo of the weird {}", |
|
"a photo of the large {}", |
|
"a photo of a cool {}", |
|
"a photo of a small {}", |
|
] |
|
|
|
imagenet_style_templates_small = [ |
|
"a painting in the style of {}", |
|
"a rendering in the style of {}", |
|
"a cropped painting in the style of {}", |
|
"the painting in the style of {}", |
|
"a clean painting in the style of {}", |
|
"a dirty painting in the style of {}", |
|
"a dark painting in the style of {}", |
|
"a picture in the style of {}", |
|
"a cool painting in the style of {}", |
|
"a close-up painting in the style of {}", |
|
"a bright painting in the style of {}", |
|
"a cropped painting in the style of {}", |
|
"a good painting in the style of {}", |
|
"a close-up painting in the style of {}", |
|
"a rendition in the style of {}", |
|
"a nice painting in the style of {}", |
|
"a small painting in the style of {}", |
|
"a weird painting in the style of {}", |
|
"a large painting in the style of {}", |
|
] |
|
|
|
|
|
class TextualInversionDataset(Dataset): |
|
def __init__( |
|
self, |
|
data_root, |
|
tokenizer, |
|
learnable_property="object", |
|
size=512, |
|
repeats=100, |
|
interpolation="bicubic", |
|
flip_p=0.5, |
|
set="train", |
|
placeholder_token="*", |
|
center_crop=False, |
|
): |
|
self.data_root = data_root |
|
self.tokenizer = tokenizer |
|
self.learnable_property = learnable_property |
|
self.size = size |
|
self.placeholder_token = placeholder_token |
|
self.center_crop = center_crop |
|
self.flip_p = flip_p |
|
|
|
self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)] |
|
|
|
self.num_images = len(self.image_paths) |
|
self._length = self.num_images |
|
|
|
if set == "train": |
|
self._length = self.num_images * repeats |
|
|
|
self.interpolation = { |
|
"linear": PIL.Image.LINEAR, |
|
"bilinear": PIL.Image.BILINEAR, |
|
"bicubic": PIL.Image.BICUBIC, |
|
"lanczos": PIL.Image.LANCZOS, |
|
}[interpolation] |
|
|
|
self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small |
|
self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p) |
|
|
|
def __len__(self): |
|
return self._length |
|
|
|
def __getitem__(self, i): |
|
example = {} |
|
image = Image.open(self.image_paths[i % self.num_images]) |
|
|
|
if not image.mode == "RGB": |
|
image = image.convert("RGB") |
|
|
|
placeholder_string = self.placeholder_token |
|
text = random.choice(self.templates).format(placeholder_string) |
|
|
|
example["input_ids"] = self.tokenizer( |
|
text, |
|
padding="max_length", |
|
truncation=True, |
|
max_length=self.tokenizer.model_max_length, |
|
return_tensors="pt", |
|
).input_ids[0] |
|
|
|
|
|
img = np.array(image).astype(np.uint8) |
|
|
|
if self.center_crop: |
|
crop = min(img.shape[0], img.shape[1]) |
|
h, w, = ( |
|
img.shape[0], |
|
img.shape[1], |
|
) |
|
img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2] |
|
|
|
image = Image.fromarray(img) |
|
image = image.resize((self.size, self.size), resample=self.interpolation) |
|
|
|
image = self.flip_transform(image) |
|
image = np.array(image).astype(np.uint8) |
|
image = (image / 127.5 - 1.0).astype(np.float32) |
|
|
|
example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1) |
|
return example |
|
|
|
|
|
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None): |
|
if token is None: |
|
token = HfFolder.get_token() |
|
if organization is None: |
|
username = whoami(token)["name"] |
|
return f"{username}/{model_id}" |
|
else: |
|
return f"{organization}/{model_id}" |
|
|
|
|
|
def freeze_params(params): |
|
for param in params: |
|
param.requires_grad = False |
|
|
|
|
|
def merge_two_dicts(starting_dict: dict, updater_dict: dict) -> dict: |
|
""" |
|
Starts from base starting dict and then adds the remaining key values from updater replacing the values from |
|
the first starting/base dict with the second updater dict. |
|
|
|
For later: how does d = {**d1, **d2} replace collision? |
|
|
|
:param starting_dict: |
|
:param updater_dict: |
|
:return: |
|
""" |
|
new_dict: dict = starting_dict.copy() |
|
new_dict.update(updater_dict) |
|
return new_dict |
|
|
|
def merge_args(args1: argparse.Namespace, args2: argparse.Namespace) -> argparse.Namespace: |
|
""" |
|
|
|
ref: https://stackoverflow.com/questions/56136549/how-can-i-merge-two-argparse-namespaces-in-python-2-x |
|
:param args1: |
|
:param args2: |
|
:return: |
|
""" |
|
|
|
|
|
merged_key_values_for_namespace: dict = merge_two_dicts(vars(args1), vars(args2)) |
|
args = argparse.Namespace(**merged_key_values_for_namespace) |
|
return args |
|
|
|
def run_training(args_imported): |
|
args_default = parse_args() |
|
args = merge_args(args_default, args_imported) |
|
|
|
print(args) |
|
logging_dir = os.path.join(args.output_dir, args.logging_dir) |
|
|
|
accelerator = Accelerator( |
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
mixed_precision=args.mixed_precision, |
|
log_with="tensorboard", |
|
logging_dir=logging_dir, |
|
) |
|
|
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
|
|
if accelerator.is_main_process: |
|
if args.push_to_hub: |
|
if args.hub_model_id is None: |
|
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) |
|
else: |
|
repo_name = args.hub_model_id |
|
repo = Repository(args.output_dir, clone_from=repo_name) |
|
|
|
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: |
|
if "step_*" not in gitignore: |
|
gitignore.write("step_*\n") |
|
if "epoch_*" not in gitignore: |
|
gitignore.write("epoch_*\n") |
|
elif args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
|
|
if args.tokenizer_name: |
|
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) |
|
elif args.pretrained_model_name_or_path: |
|
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") |
|
|
|
|
|
num_added_tokens = tokenizer.add_tokens(args.placeholder_token) |
|
if num_added_tokens == 0: |
|
raise ValueError( |
|
f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different" |
|
" `placeholder_token` that is not already in the tokenizer." |
|
) |
|
|
|
|
|
token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False) |
|
|
|
if len(token_ids) > 1: |
|
raise ValueError("The initializer token must be a single token.") |
|
|
|
initializer_token_id = token_ids[0] |
|
placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token) |
|
|
|
|
|
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") |
|
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") |
|
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") |
|
|
|
|
|
text_encoder.resize_token_embeddings(len(tokenizer)) |
|
|
|
|
|
token_embeds = text_encoder.get_input_embeddings().weight.data |
|
token_embeds[placeholder_token_id] = token_embeds[initializer_token_id] |
|
|
|
|
|
freeze_params(vae.parameters()) |
|
freeze_params(unet.parameters()) |
|
|
|
params_to_freeze = itertools.chain( |
|
text_encoder.text_model.encoder.parameters(), |
|
text_encoder.text_model.final_layer_norm.parameters(), |
|
text_encoder.text_model.embeddings.position_embedding.parameters(), |
|
) |
|
freeze_params(params_to_freeze) |
|
|
|
if args.scale_lr: |
|
args.learning_rate = ( |
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes |
|
) |
|
|
|
|
|
optimizer = torch.optim.AdamW( |
|
text_encoder.get_input_embeddings().parameters(), |
|
lr=args.learning_rate, |
|
betas=(args.adam_beta1, args.adam_beta2), |
|
weight_decay=args.adam_weight_decay, |
|
eps=args.adam_epsilon, |
|
) |
|
|
|
|
|
noise_scheduler = DDPMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
num_train_timesteps=1000, |
|
) |
|
|
|
train_dataset = TextualInversionDataset( |
|
data_root=args.train_data_dir, |
|
tokenizer=tokenizer, |
|
size=args.resolution, |
|
placeholder_token=args.placeholder_token, |
|
repeats=args.repeats, |
|
learnable_property=args.learnable_property, |
|
center_crop=args.center_crop, |
|
set="train", |
|
) |
|
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.train_batch_size, shuffle=True) |
|
|
|
|
|
overrode_max_train_steps = False |
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
overrode_max_train_steps = True |
|
|
|
lr_scheduler = get_scheduler( |
|
args.lr_scheduler, |
|
optimizer=optimizer, |
|
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, |
|
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, |
|
) |
|
|
|
text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
text_encoder, optimizer, train_dataloader, lr_scheduler |
|
) |
|
|
|
|
|
vae.to(accelerator.device) |
|
unet.to(accelerator.device) |
|
|
|
|
|
vae.eval() |
|
unet.eval() |
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
if overrode_max_train_steps: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
accelerator.init_trackers("textual_inversion", config=vars(args)) |
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") |
|
logger.info(f" Total optimization steps = {args.max_train_steps}") |
|
|
|
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) |
|
progress_bar.set_description("Steps") |
|
global_step = 0 |
|
|
|
for epoch in range(args.num_train_epochs): |
|
text_encoder.train() |
|
for step, batch in enumerate(train_dataloader): |
|
with accelerator.accumulate(text_encoder): |
|
|
|
latents = vae.encode(batch["pixel_values"]).latent_dist.sample().detach() |
|
latents = latents * 0.18215 |
|
|
|
|
|
noise = torch.randn(latents.shape).to(latents.device) |
|
bsz = latents.shape[0] |
|
|
|
timesteps = torch.randint( |
|
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device |
|
).long() |
|
|
|
|
|
|
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) |
|
|
|
|
|
encoder_hidden_states = text_encoder(batch["input_ids"])[0] |
|
|
|
|
|
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample |
|
|
|
loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() |
|
accelerator.backward(loss) |
|
|
|
|
|
|
|
if accelerator.num_processes > 1: |
|
grads = text_encoder.module.get_input_embeddings().weight.grad |
|
else: |
|
grads = text_encoder.get_input_embeddings().weight.grad |
|
|
|
index_grads_to_zero = torch.arange(len(tokenizer)) != placeholder_token_id |
|
grads.data[index_grads_to_zero, :] = grads.data[index_grads_to_zero, :].fill_(0) |
|
|
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
|
|
|
|
if accelerator.sync_gradients: |
|
progress_bar.update(1) |
|
global_step += 1 |
|
if global_step % args.save_steps == 0: |
|
save_progress(text_encoder, placeholder_token_id, accelerator, args) |
|
|
|
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
|
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
accelerator.wait_for_everyone() |
|
|
|
|
|
if accelerator.is_main_process: |
|
pipeline = StableDiffusionPipeline( |
|
text_encoder=accelerator.unwrap_model(text_encoder), |
|
vae=vae, |
|
unet=unet, |
|
tokenizer=tokenizer, |
|
scheduler=PNDMScheduler( |
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True |
|
), |
|
safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker"), |
|
feature_extractor=CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32"), |
|
) |
|
pipeline.save_pretrained(args.output_dir) |
|
|
|
save_progress(text_encoder, placeholder_token_id, accelerator, args) |
|
|
|
if args.push_to_hub: |
|
repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True) |
|
|
|
accelerator.end_training() |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|