Spaces:
Running
Running
import gradio as gr | |
import ljspeechimportable | |
import torch | |
import numpy as np | |
import styletts2importable | |
import re | |
import phonemizer | |
def split_and_recombine_text(text, desired_length=200, max_length=400): | |
"""Split text it into chunks of a desired length trying to keep sentences intact.""" | |
# normalize text, remove redundant whitespace and convert non-ascii quotes to ascii | |
text = re.sub(r'\n\n+', '\n', text) | |
text = re.sub(r'\s+', ' ', text) | |
text = re.sub(r'[“”]', '"', text) | |
rv = [] | |
in_quote = False | |
current = "" | |
split_pos = [] | |
pos = -1 | |
end_pos = len(text) - 1 | |
def seek(delta): | |
nonlocal pos, in_quote, current | |
is_neg = delta < 0 | |
for _ in range(abs(delta)): | |
if is_neg: | |
pos -= 1 | |
current = current[:-1] | |
else: | |
pos += 1 | |
current += text[pos] | |
if text[pos] == '"': | |
in_quote = not in_quote | |
return text[pos] | |
def peek(delta): | |
p = pos + delta | |
return text[p] if p < end_pos and p >= 0 else "" | |
def commit(): | |
nonlocal rv, current, split_pos | |
rv.append(current) | |
current = "" | |
split_pos = [] | |
while pos < end_pos: | |
c = seek(1) | |
# do we need to force a split? | |
if len(current) >= max_length: | |
if len(split_pos) > 0 and len(current) > (desired_length / 2): | |
# we have at least one sentence and we are over half the desired length, seek back to the last split | |
d = pos - split_pos[-1] | |
seek(-d) | |
else: | |
# no full sentences, seek back until we are not in the middle of a word and split there | |
while c not in '!?.\n ' and pos > 0 and len(current) > desired_length: | |
c = seek(-1) | |
commit() | |
# check for sentence boundaries | |
elif not in_quote and (c in '!?\n' or (c == '.' and peek(1) in '\n ')): | |
# seek forward if we have consecutive boundary markers but still within the max length | |
while pos < len(text) - 1 and len(current) < max_length and peek(1) in '!?.': | |
c = seek(1) | |
split_pos.append(pos) | |
if len(current) >= desired_length: | |
commit() | |
# treat end of quote as a boundary if its followed by a space or newline | |
elif in_quote and peek(1) == '"' and peek(2) in '\n ': | |
seek(2) | |
split_pos.append(pos) | |
rv.append(current) | |
# clean up, remove lines with only whitespace or punctuation | |
rv = [s.strip() for s in rv] | |
rv = [s for s in rv if len(s) > 0 and not re.match(r'^[\s\.,;:!?]*$', s)] | |
return rv | |
theme = gr.themes.Base( | |
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'], | |
) | |
voicelist = ['f-us-1', 'f-us-2', 'f-us-3', 'f-us-4', 'm-us-1', 'm-us-2', 'm-us-3', 'm-us-4'] | |
voices = {} | |
global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True) | |
for v in voicelist: | |
voices[v] = styletts2importable.compute_style(f'voices/{v}.wav') | |
def synthesize(text, voice, lngsteps, password, progress=gr.Progress()): | |
if text.strip() == "": | |
raise gr.Error("You must enter some text") | |
texts = split_and_recombine_text(text) | |
v = voice.lower() | |
audios = [] | |
for t in progress.tqdm(texts): | |
audios.append(styletts2importable.inference(t, voices[v], alpha=0.3, beta=0.7, diffusion_steps=lngsteps, embedding_scale=1)) | |
return (24000, np.concatenate(audios)) | |
def ljsynthesize(text, steps, progress=gr.Progress()): | |
noise = torch.randn(1,1,256).to('cuda' if torch.cuda.is_available() else 'cpu') | |
if text.strip() == "": | |
raise gr.Error("You must enter some text") | |
texts = split_and_recombine_text(text) | |
audios = [] | |
for t in progress.tqdm(texts): | |
audios.append(ljspeechimportable.inference(t, noise, diffusion_steps=steps, embedding_scale=1)) | |
return (24000, np.concatenate(audios)) | |
with gr.Blocks() as libritts: # just realized it isn't vctk but libritts but i'm too lazy to change it rn | |
with gr.Row(): | |
with gr.Column(scale=1): | |
inp = gr.Textbox(label="Text", info="What would you like StyleTTS 2 to read? It works better on full sentences.", interactive=True) | |
voice = gr.Dropdown(voicelist, label="Voice", info="Select a default voice.", value='m-us-2', interactive=True) | |
multispeakersteps = gr.Slider(minimum=3, maximum=15, value=3, step=1, label="Diffusion Steps", info="Theoretically, higher should be better quality but slower, but we cannot notice a difference. Try with lower steps first - it is faster", interactive=True) | |
# use_gruut = gr.Checkbox(label="Use alternate phonemizer (Gruut) - Experimental") | |
with gr.Column(scale=1): | |
btn = gr.Button("Synthesize", variant="primary") | |
audio = gr.Audio(interactive=False, label="Synthesized Audio") | |
btn.click(synthesize, inputs=[inp, voice, multispeakersteps], outputs=[audio], concurrency_limit=4) | |
with gr.Blocks() as lj: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
ljinp = gr.Textbox(label="Text", info="What would you like StyleTTS 2 to read? It works better on full sentences.", interactive=True) | |
ljsteps = gr.Slider(minimum=3, maximum=20, value=3, step=1, label="Diffusion Steps", info="Theoretically, higher should be better quality but slower, but we cannot notice a difference. Try with lower steps first - it is faster", interactive=True) | |
with gr.Column(scale=1): | |
ljbtn = gr.Button("Synthesize", variant="primary") | |
ljaudio = gr.Audio(interactive=False, label="Synthesized Audio") | |
ljbtn.click(ljsynthesize, inputs=[ljinp, ljsteps], outputs=[ljaudio], concurrency_limit=4) | |
with gr.Blocks(title="StyleTTS 2", css="", theme=theme) as demo: | |
gr.DuplicateButton("Duplicate Space") | |
gr.TabbedInterface([libritts, lj], ['Multi-Voice', 'LJSpeech']) | |
gr.Markdown(""" | |
Original Demo by [mrfakename](https://twitter.com/realmrfakename). I am not affiliated with the StyleTTS 2 authors. | |
Run this demo locally using Docker: | |
```bash | |
docker run -it -p 7860:7860 --platform=linux/amd64 --gpus all registry.hf.space/styletts2-styletts2:latest python app.py | |
``` | |
""") # Please do not remove this line. | |
if __name__ == "__main__": | |
# demo.queue(api_open=False, max_size=15).launch(show_api=False) | |
demo.queue(api_open=True, max_size=15).launch(show_api=True) |