import streamlit as st from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, pipeline ) tokenizer = AutoTokenizer.from_pretrained( 'airesearch/wangchanberta-base-att-spm-uncased' ) model = AutoModelForSequenceClassification.from_pretrained( 'airesearch/wangchanberta-base-att-spm-uncased', revision='finetuned@wisesight_sentiment-v1.1', ) text_cls_pipeline = pipeline(task='sentiment-analysis', tokenizer=tokenizer, model=model, return_all_scores=True) def main(): st.title("Text") with st.form("text_field"): text = st.text_area('enter some text:') # clicked==True only when the button is clicked clicked = st.form_submit_button("Submit") if clicked: results = text_cls_pipeline([text]) st.json(results) if __name__ == "__main__": main()