|
import streamlit as st |
|
from transformers import pipeline |
|
|
|
def sentiment_funtion(text): |
|
model = pipeline("sentiment-analysis", model="stevhliu/my_awesome_model") |
|
output = model(text)[0] |
|
label = output["label"] |
|
score = output["score"] |
|
return label , score |
|
|
|
def main(): |
|
st.title("Dineth") |
|
st.sidebar.image("https://huggingface.co/spaces/Dineth98/TA_1/resolve/main/sentiment-analysis-1280x720.jpg", use_column_width=True) |
|
st.sidebar.subheader("About This App") |
|
st.sidebar.write("Fuck off") |
|
user_input = st.text_area("Input Text Here") |
|
if st.button("Sentiment"): |
|
label , score = sentiment_funtion(user_input) |
|
if label == "LABEL_1": |
|
label = "Positive" |
|
postive_score = score |
|
negative_score = 1 - score |
|
color = "green" |
|
else: |
|
label = "Negative" |
|
postive_score = 1 - score |
|
negative_score = score |
|
color = "red" |
|
|
|
style = f'color:{color}' |
|
text = f'Sentiment Label: {label}' |
|
sentiment_text = f'<h4 style="{style}">{text}</h4>' |
|
st.write("Sentiment:") |
|
st.write(sentiment_text, unsafe_allow_html=True) |
|
st.write(f"Positive Score: {postive_score:.2f}") |
|
st.write(f"Negative Score: {negative_score:.2f}") |
|
|
|
if __name__ == "__main__": |
|
main() |