Spaces:
Sleeping
Sleeping
Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import SimpleITK as sitk
|
3 |
+
|
4 |
+
channels = [
|
5 |
+
"background",
|
6 |
+
"spleen",
|
7 |
+
"right_kidney",
|
8 |
+
"left_kidney",
|
9 |
+
"gallbladder",
|
10 |
+
"liver",
|
11 |
+
"stomach",
|
12 |
+
"pancreas",
|
13 |
+
"right_adrenal_gland",
|
14 |
+
"left_adrenal_gland",
|
15 |
+
"left_lung",
|
16 |
+
"right_lung",
|
17 |
+
"heart",
|
18 |
+
"aorta",
|
19 |
+
"inferior_vena_cava",
|
20 |
+
"portal_vein_and_splenic_vein",
|
21 |
+
"left_iliac_artery",
|
22 |
+
"right_iliac_artery",
|
23 |
+
"left_iliac_vena",
|
24 |
+
"right_iliac_vena",
|
25 |
+
"esophagus",
|
26 |
+
"small_bowel",
|
27 |
+
"duodenum",
|
28 |
+
"colon",
|
29 |
+
"urinary_bladder",
|
30 |
+
"spine",
|
31 |
+
"sacrum",
|
32 |
+
"left_hip",
|
33 |
+
"right_hip",
|
34 |
+
"left_femur",
|
35 |
+
"right_femur",
|
36 |
+
"left_autochthonous_muscle",
|
37 |
+
"right_autochthonous_muscle",
|
38 |
+
"left_iliopsoas_muscle",
|
39 |
+
"right_iliopsoas_muscle",
|
40 |
+
"left_gluteus_maximus",
|
41 |
+
"right_gluteus_maximus",
|
42 |
+
"left_gluteus_medius",
|
43 |
+
"right_gluteus_medius",
|
44 |
+
"left_gluteus_minimus",
|
45 |
+
"right_gluteus_minimus",
|
46 |
+
]
|
47 |
+
|
48 |
+
|
49 |
+
def make_isotropic(image, interpolator=sitk.sitkLinear, spacing=None):
|
50 |
+
"""
|
51 |
+
Many file formats (e.g. jpg, png,...) expect the pixels to be isotropic, same
|
52 |
+
spacing for all axes. Saving non-isotropic data in these formats will result in
|
53 |
+
distorted images. This function makes an image isotropic via resampling, if needed.
|
54 |
+
Args:
|
55 |
+
image (SimpleITK.Image): Input image.
|
56 |
+
interpolator: By default the function uses a linear interpolator. For
|
57 |
+
label images one should use the sitkNearestNeighbor interpolator
|
58 |
+
so as not to introduce non-existant labels.
|
59 |
+
spacing (float): Desired spacing. If none given then use the smallest spacing from
|
60 |
+
the original image.
|
61 |
+
Returns:
|
62 |
+
SimpleITK.Image with isotropic spacing which occupies the same region in space as
|
63 |
+
the input image.
|
64 |
+
"""
|
65 |
+
original_spacing = image.GetSpacing()
|
66 |
+
# Image is already isotropic, just return a copy.
|
67 |
+
if all(spc == original_spacing[0] for spc in original_spacing):
|
68 |
+
return sitk.Image(image)
|
69 |
+
# Make image isotropic via resampling.
|
70 |
+
original_size = image.GetSize()
|
71 |
+
if spacing is None:
|
72 |
+
spacing = min(original_spacing)
|
73 |
+
new_spacing = [spacing] * image.GetDimension()
|
74 |
+
new_size = [int(round(osz * ospc / spacing)) for osz, ospc in zip(original_size, original_spacing)]
|
75 |
+
return sitk.Resample(
|
76 |
+
image,
|
77 |
+
new_size,
|
78 |
+
sitk.Transform(),
|
79 |
+
interpolator,
|
80 |
+
image.GetOrigin(),
|
81 |
+
new_spacing,
|
82 |
+
image.GetDirection(),
|
83 |
+
0, # default pixel value
|
84 |
+
image.GetPixelID(),
|
85 |
+
)
|
86 |
+
|
87 |
+
|
88 |
+
def label_mapper(seg):
|
89 |
+
|
90 |
+
labels = []
|
91 |
+
for _class in np.unique(seg):
|
92 |
+
if _class == 0:
|
93 |
+
continue
|
94 |
+
labels.append((seg == _class, channels[_class]))
|
95 |
+
|
96 |
+
return labels
|
97 |
+
|
98 |
+
|
99 |
+
def sitk2numpy(img, normalize=False):
|
100 |
+
img = sitk.DICOMOrient(img, "LPS")
|
101 |
+
# img = make_isotropic(img)
|
102 |
+
img = sitk.GetArrayFromImage(img)
|
103 |
+
if normalize:
|
104 |
+
minval, maxval = np.min(img), np.max(img)
|
105 |
+
img = ((img - minval) / (maxval - minval)).clip(0, 1) * 255
|
106 |
+
img = img.astype(np.uint8)
|
107 |
+
return img
|
108 |
+
|
109 |
+
|
110 |
+
def read_image(path, normalize=False):
|
111 |
+
|
112 |
+
img = sitk.ReadImage(path)
|
113 |
+
return sitk2numpy(img, normalize)
|
114 |
+
|
115 |
+
|
116 |
+
def display(image, seg=None, _slice=50):
|
117 |
+
|
118 |
+
# Image
|
119 |
+
if image is None or (isinstance(image, list) and len(image) == 0):
|
120 |
+
return None
|
121 |
+
if isinstance(image, list):
|
122 |
+
image = image[-1]
|
123 |
+
x = int(_slice * (image.shape[0] / 100))
|
124 |
+
image = image[x, :, :]
|
125 |
+
|
126 |
+
# Segmentation
|
127 |
+
if seg is None or (isinstance(seg, list) and len(seg) == 0):
|
128 |
+
seg = []
|
129 |
+
else:
|
130 |
+
if isinstance(seg, list):
|
131 |
+
seg = seg[-1]
|
132 |
+
seg = label_mapper(seg[x, :, :])
|
133 |
+
|
134 |
+
return image, seg
|
135 |
+
|
136 |
+
|
137 |
+
def read_and_display(path, image_state, seg_state):
|
138 |
+
|
139 |
+
image_state.clear()
|
140 |
+
seg_state.clear()
|
141 |
+
|
142 |
+
if path is not None:
|
143 |
+
image = read_image(path, normalize=True)
|
144 |
+
image_state.append(image)
|
145 |
+
return display(image), image_state, seg_state
|
146 |
+
else:
|
147 |
+
return None, image_state, seg_state
|