File size: 5,982 Bytes
ded7cbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import streamlit as st
import numpy as np
from wordllama import WordLlama
import plotly.graph_objects as go
import plotly.express as px
from sklearn.decomposition import PCA
import pandas as pd

# Page configuration
st.set_page_config(
    page_title="WordLlama Explorer",
    page_icon="πŸ¦™",
    layout="wide"
)

# Custom CSS
st.markdown("""
    <style>
    .main {
        background-color: #f8f9fa;
    }
    .stTabs [data-baseweb="tab-list"] {
        gap: 24px;
    }
    .stTabs [data-baseweb="tab"] {
        height: 50px;
        padding-left: 20px;
        padding-right: 20px;
    }
    .title-font {
        font-size: 28px !important;
        font-weight: bold;
        color: #2c3e50;
    }
    </style>
    """, unsafe_allow_html=True)

@st.cache_resource
def load_wordllama():
    return WordLlama.load()

wl = load_wordllama()

def create_3d_visualization(texts, embeddings):
    # Reduce to 3D using PCA
    pca = PCA(n_components=3)
    embeddings_3d = pca.fit_transform(embeddings)
    
    # Create DataFrame
    df = pd.DataFrame(
        embeddings_3d,
        columns=['X', 'Y', 'Z']
    )
    df['text'] = texts
    
    fig = px.scatter_3d(
        df, x='X', y='Y', z='Z',
        text='text',
        title='Word Embeddings in 3D Space'
    )
    
    fig.update_traces(
        marker=dict(size=8, opacity=0.8),
        textposition='top center'
    )
    fig.update_layout(
        scene=dict(
            xaxis_title='Component 1',
            yaxis_title='Component 2',
            zaxis_title='Component 3'
        ),
        height=700
    )
    return fig

def main():
    st.title("πŸ¦™ WordLlama Embedding Explorer")
    st.markdown("<p class='title-font'>Explore the power of WordLlama embeddings</p>", 
                unsafe_allow_html=True)
    
    tabs = st.tabs(["πŸ’« Similarity Explorer", "🎯 Document Ranking", "πŸ” Fuzzy Deduplication"])
    
    with tabs[0]:
        st.markdown("### Compare Text Similarity")
        
        col1, col2 = st.columns(2)
        with col1:
            text1 = st.text_area("First Text", value="I love programming in Python", height=100)
        with col2:
            text2 = st.text_area("Second Text", value="Coding with Python is amazing", height=100)
        
        if st.button("Calculate Similarity", key="sim_button"):
            similarity = wl.similarity(text1, text2)
            
            st.markdown("### Similarity Score")
            st.metric(
                label="Cosine Similarity",
                value=f"{similarity:.4f}",
                help="Score ranges from 0 (different) to 1 (identical)"
            )
            
            # Visualize both texts in 3D space
            embeddings = wl.embed([text1, text2])
            st.plotly_chart(
                create_3d_visualization([text1, text2], embeddings),
                use_container_width=True
            )
    
    with tabs[1]:
        st.markdown("### Rank Documents by Similarity")
        
        query = st.text_area("Query Text", value="I went to the car", height=100)
        
        # Multiple document input
        st.markdown("### Enter Documents to Rank")
        num_docs = st.slider("Number of documents:", 2, 6, 4)
        
        documents = []
        for i in range(num_docs):
            doc = st.text_area(f"Document {i+1}", 
                             value=f"Example document {i+1}", 
                             height=50,
                             key=f"doc_{i}")
            documents.append(doc)
        
        if st.button("Rank Documents", key="rank_button"):
            ranked_docs = wl.rank(query, documents)
            
            st.markdown("### Ranking Results")
            for doc, score in ranked_docs:
                st.markdown(f"""
                <div style='padding: 10px; margin: 5px; background-color: #f0f2f6; border-radius: 5px;'>
                    <b>Score: {score:.4f}</b><br>
                    {doc}
                </div>
                """, unsafe_allow_html=True)
            
            # Visualize all texts including query
            all_texts = [query] + documents
            embeddings = wl.embed(all_texts)
            st.plotly_chart(
                create_3d_visualization(all_texts, embeddings),
                use_container_width=True
            )
    
    with tabs[2]:
        st.markdown("### Fuzzy Deduplication")
        st.markdown("""
        Remove similar documents based on a similarity threshold.
        Documents with similarity above the threshold will be considered duplicates.
        """)
        
        # Document input for deduplication
        st.markdown("### Enter Documents")
        num_dedup_docs = st.slider("Number of documents:", 2, 8, 4, key="dedup_slider")
        
        dedup_docs = []
        for i in range(num_dedup_docs):
            doc = st.text_area(f"Document {i+1}", 
                             value=f"Example document {i+1}", 
                             height=50,
                             key=f"dedup_doc_{i}")
            dedup_docs.append(doc)
        
        threshold = st.slider("Similarity Threshold:", 0.0, 1.0, 0.8)
        
        if st.button("Find Duplicates", key="dedup_button"):
            unique_docs = wl.deduplicate(dedup_docs, threshold=threshold)
            
            st.markdown("### Results")
            st.markdown(f"Found {len(unique_docs)} unique documents:")
            
            for doc in unique_docs:
                st.markdown(f"""
                <div style='padding: 10px; margin: 5px; background-color: #f0f2f6; border-radius: 5px;'>
                    {doc}
                </div>
                """, unsafe_allow_html=True)
            
            # Visualize all documents
            embeddings = wl.embed(dedup_docs)
            st.plotly_chart(
                create_3d_visualization(dedup_docs, embeddings),
                use_container_width=True
            )

if __name__ == "__main__":
    main()