File size: 6,666 Bytes
ded7cbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8afde48
 
 
ded7cbd
8afde48
 
ded7cbd
 
8afde48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ded7cbd
 
8afde48
 
ded7cbd
8afde48
ded7cbd
 
 
 
 
 
 
8afde48
ded7cbd
 
8afde48
ded7cbd
 
 
 
 
 
 
 
 
 
8afde48
 
ded7cbd
8afde48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ded7cbd
 
8afde48
ded7cbd
8afde48
 
ded7cbd
8afde48
 
 
 
 
 
 
 
ded7cbd
8afde48
 
ded7cbd
8afde48
ded7cbd
8afde48
ded7cbd
 
 
8afde48
ded7cbd
8afde48
ded7cbd
 
8afde48
 
 
 
 
 
 
 
 
 
 
 
ded7cbd
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import streamlit as st
import numpy as np
from wordllama import WordLlama
import plotly.graph_objects as go
import plotly.express as px
from sklearn.decomposition import PCA
import pandas as pd

# Page configuration
st.set_page_config(
    page_title="WordLlama Explorer",
    page_icon="πŸ¦™",
    layout="wide"
)

# Custom CSS
st.markdown("""
    <style>
    .main {
        background-color: #f8f9fa;
    }
    .stTabs [data-baseweb="tab-list"] {
        gap: 24px;
    }
    .stTabs [data-baseweb="tab"] {
        height: 50px;
        padding-left: 20px;
        padding-right: 20px;
    }
    .title-font {
        font-size: 28px !important;
        font-weight: bold;
        color: #2c3e50;
    }
    </style>
    """, unsafe_allow_html=True)

@st.cache_resource
def load_wordllama():
    return WordLlama.load()

wl = load_wordllama()

def create_visualization(texts, embeddings):
    """Create appropriate visualization based on number of samples"""
    n_samples = len(embeddings)
    
    # Create DataFrame with original embeddings
    df = pd.DataFrame(embeddings)
    df['text'] = texts
    
    if n_samples == 2:
        # For 2 samples, create a 2D visualization
        fig = go.Figure()
        
        # Add points
        fig.add_trace(go.Scatter(
            x=[0, 1],
            y=[0, wl.similarity(texts[0], texts[1])],
            mode='markers+text',
            text=texts,
            textposition='top center',
            marker=dict(size=10)
        ))
        
        fig.update_layout(
            title="Text Similarity Visualization",
            xaxis_title="Position",
            yaxis_title="Similarity",
            height=400,
            showlegend=False
        )
        
    else:
        # For 3 or more samples, use PCA for 3D visualization
        pca = PCA(n_components=min(3, n_samples))
        embeddings_reduced = pca.fit_transform(embeddings)
        
        # Pad with zeros if needed
        if embeddings_reduced.shape[1] < 3:
            padding = np.zeros((embeddings_reduced.shape[0], 3 - embeddings_reduced.shape[1]))
            embeddings_reduced = np.hstack([embeddings_reduced, padding])
        
        # Create DataFrame for plotting
        df_plot = pd.DataFrame(
            embeddings_reduced,
            columns=['X', 'Y', 'Z']
        )
        df_plot['text'] = texts
        
        fig = px.scatter_3d(
            df_plot, x='X', y='Y', z='Z',
            text='text',
            title='Text Embeddings Visualization'
        )
        
        fig.update_traces(
            marker=dict(size=8, opacity=0.8),
            textposition='top center'
        )
        fig.update_layout(
            scene=dict(
                xaxis_title='Component 1',
                yaxis_title='Component 2',
                zaxis_title='Component 3'
            ),
            height=700
        )
    
    return fig

def create_similarity_matrix(texts):
    n = len(texts)
    similarity_matrix = np.zeros((n, n))
    
    for i in range(n):
        for j in range(n):
            similarity_matrix[i][j] = wl.similarity(texts[i], texts[j])
    
    fig = go.Figure(data=go.Heatmap(
        z=similarity_matrix,
        x=texts,
        y=texts,
        colorscale='Viridis',
        text=np.round(similarity_matrix, 3),
        texttemplate='%{text}',
        textfont={"size": 10},
    ))
    
    fig.update_layout(
        title="Similarity Matrix",
        height=400
    )
    
    return fig

def main():
    st.title("πŸ¦™ WordLlama Embedding Explorer")
    st.markdown("<p class='title-font'>Explore the power of WordLlama embeddings</p>", 
                unsafe_allow_html=True)
    
    tabs = st.tabs(["πŸ’« Text Similarity", "🎯 Multi-Text Analysis"])
    
    with tabs[0]:
        st.markdown("### Compare Two Texts")
        
        col1, col2 = st.columns(2)
        with col1:
            text1 = st.text_area("First Text", value="I love programming in Python", height=100)
        with col2:
            text2 = st.text_area("Second Text", value="Coding with Python is amazing", height=100)
        
        if st.button("Calculate Similarity", key="sim_button"):
            similarity = wl.similarity(text1, text2)
            
            st.markdown("### Results")
            col1, col2 = st.columns(2)
            
            with col1:
                st.metric(
                    label="Similarity Score",
                    value=f"{similarity:.4f}",
                    help="1.0 = identical, 0.0 = completely different"
                )
                
                interpretation = (
                    "Very Similar" if similarity > 0.8
                    else "Moderately Similar" if similarity > 0.5
                    else "Different"
                )
                st.info(f"Interpretation: {interpretation}")
            
            with col2:
                embeddings = wl.embed([text1, text2])
                st.plotly_chart(
                    create_visualization([text1, text2], embeddings),
                    use_container_width=True
                )
    
    with tabs[1]:
        st.markdown("### Analyze Multiple Texts")
        
        num_texts = st.slider("Number of texts:", 2, 6, 3)
        texts = []
        
        for i in range(num_texts):
            text = st.text_area(
                f"Text {i+1}", 
                value=f"Example text {i+1}", 
                height=100,
                key=f"text_{i}"
            )
            texts.append(text)
        
        if st.button("Analyze Texts", key="analyze_button"):
            embeddings = wl.embed(texts)
            
            st.markdown("### Visualization")
            st.plotly_chart(
                create_visualization(texts, embeddings),
                use_container_width=True
            )
            
            st.markdown("### Similarity Matrix")
            st.plotly_chart(
                create_similarity_matrix(texts),
                use_container_width=True
            )
            
            # Pairwise similarity analysis
            st.markdown("### Pairwise Similarities")
            for i in range(len(texts)):
                for j in range(i+1, len(texts)):
                    similarity = wl.similarity(texts[i], texts[j])
                    interpretation = (
                        "🟒 Very Similar" if similarity > 0.8
                        else "🟑 Moderately Similar" if similarity > 0.5
                        else "πŸ”΄ Different"
                    )
                    st.write(f"{interpretation} ({similarity:.3f}): Text {i+1} vs Text {j+1}")

if __name__ == "__main__":
    main()