File size: 6,666 Bytes
ded7cbd 8afde48 ded7cbd 8afde48 ded7cbd 8afde48 ded7cbd 8afde48 ded7cbd 8afde48 ded7cbd 8afde48 ded7cbd 8afde48 ded7cbd 8afde48 ded7cbd 8afde48 ded7cbd 8afde48 ded7cbd 8afde48 ded7cbd 8afde48 ded7cbd 8afde48 ded7cbd 8afde48 ded7cbd 8afde48 ded7cbd 8afde48 ded7cbd 8afde48 ded7cbd 8afde48 ded7cbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import streamlit as st
import numpy as np
from wordllama import WordLlama
import plotly.graph_objects as go
import plotly.express as px
from sklearn.decomposition import PCA
import pandas as pd
# Page configuration
st.set_page_config(
page_title="WordLlama Explorer",
page_icon="π¦",
layout="wide"
)
# Custom CSS
st.markdown("""
<style>
.main {
background-color: #f8f9fa;
}
.stTabs [data-baseweb="tab-list"] {
gap: 24px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
padding-left: 20px;
padding-right: 20px;
}
.title-font {
font-size: 28px !important;
font-weight: bold;
color: #2c3e50;
}
</style>
""", unsafe_allow_html=True)
@st.cache_resource
def load_wordllama():
return WordLlama.load()
wl = load_wordllama()
def create_visualization(texts, embeddings):
"""Create appropriate visualization based on number of samples"""
n_samples = len(embeddings)
# Create DataFrame with original embeddings
df = pd.DataFrame(embeddings)
df['text'] = texts
if n_samples == 2:
# For 2 samples, create a 2D visualization
fig = go.Figure()
# Add points
fig.add_trace(go.Scatter(
x=[0, 1],
y=[0, wl.similarity(texts[0], texts[1])],
mode='markers+text',
text=texts,
textposition='top center',
marker=dict(size=10)
))
fig.update_layout(
title="Text Similarity Visualization",
xaxis_title="Position",
yaxis_title="Similarity",
height=400,
showlegend=False
)
else:
# For 3 or more samples, use PCA for 3D visualization
pca = PCA(n_components=min(3, n_samples))
embeddings_reduced = pca.fit_transform(embeddings)
# Pad with zeros if needed
if embeddings_reduced.shape[1] < 3:
padding = np.zeros((embeddings_reduced.shape[0], 3 - embeddings_reduced.shape[1]))
embeddings_reduced = np.hstack([embeddings_reduced, padding])
# Create DataFrame for plotting
df_plot = pd.DataFrame(
embeddings_reduced,
columns=['X', 'Y', 'Z']
)
df_plot['text'] = texts
fig = px.scatter_3d(
df_plot, x='X', y='Y', z='Z',
text='text',
title='Text Embeddings Visualization'
)
fig.update_traces(
marker=dict(size=8, opacity=0.8),
textposition='top center'
)
fig.update_layout(
scene=dict(
xaxis_title='Component 1',
yaxis_title='Component 2',
zaxis_title='Component 3'
),
height=700
)
return fig
def create_similarity_matrix(texts):
n = len(texts)
similarity_matrix = np.zeros((n, n))
for i in range(n):
for j in range(n):
similarity_matrix[i][j] = wl.similarity(texts[i], texts[j])
fig = go.Figure(data=go.Heatmap(
z=similarity_matrix,
x=texts,
y=texts,
colorscale='Viridis',
text=np.round(similarity_matrix, 3),
texttemplate='%{text}',
textfont={"size": 10},
))
fig.update_layout(
title="Similarity Matrix",
height=400
)
return fig
def main():
st.title("π¦ WordLlama Embedding Explorer")
st.markdown("<p class='title-font'>Explore the power of WordLlama embeddings</p>",
unsafe_allow_html=True)
tabs = st.tabs(["π« Text Similarity", "π― Multi-Text Analysis"])
with tabs[0]:
st.markdown("### Compare Two Texts")
col1, col2 = st.columns(2)
with col1:
text1 = st.text_area("First Text", value="I love programming in Python", height=100)
with col2:
text2 = st.text_area("Second Text", value="Coding with Python is amazing", height=100)
if st.button("Calculate Similarity", key="sim_button"):
similarity = wl.similarity(text1, text2)
st.markdown("### Results")
col1, col2 = st.columns(2)
with col1:
st.metric(
label="Similarity Score",
value=f"{similarity:.4f}",
help="1.0 = identical, 0.0 = completely different"
)
interpretation = (
"Very Similar" if similarity > 0.8
else "Moderately Similar" if similarity > 0.5
else "Different"
)
st.info(f"Interpretation: {interpretation}")
with col2:
embeddings = wl.embed([text1, text2])
st.plotly_chart(
create_visualization([text1, text2], embeddings),
use_container_width=True
)
with tabs[1]:
st.markdown("### Analyze Multiple Texts")
num_texts = st.slider("Number of texts:", 2, 6, 3)
texts = []
for i in range(num_texts):
text = st.text_area(
f"Text {i+1}",
value=f"Example text {i+1}",
height=100,
key=f"text_{i}"
)
texts.append(text)
if st.button("Analyze Texts", key="analyze_button"):
embeddings = wl.embed(texts)
st.markdown("### Visualization")
st.plotly_chart(
create_visualization(texts, embeddings),
use_container_width=True
)
st.markdown("### Similarity Matrix")
st.plotly_chart(
create_similarity_matrix(texts),
use_container_width=True
)
# Pairwise similarity analysis
st.markdown("### Pairwise Similarities")
for i in range(len(texts)):
for j in range(i+1, len(texts)):
similarity = wl.similarity(texts[i], texts[j])
interpretation = (
"π’ Very Similar" if similarity > 0.8
else "π‘ Moderately Similar" if similarity > 0.5
else "π΄ Different"
)
st.write(f"{interpretation} ({similarity:.3f}): Text {i+1} vs Text {j+1}")
if __name__ == "__main__":
main() |